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Abstract 
 
A rising health concern is the occurrence of illnesses brought on by multidrug-resistant bacteria 
in healthcare facilities or in public spaces. The growth of microbial biofilms and efflux pumps 
are the main causes of S. aureus's antibiotic resistance. Multidrug EPs cells utilizing proteins to 
detoxify from toxic substances, appear to be essential in the development of this drug-resistant 
bacteria. Through the extrusion of numerous unrelated chemicals, experimental data have 
demonstrated their role in reduced antibacterial resistance in bacteria as well as the possible 
significance in the emergence of resistant phenotypes. Efflux systems plays an important role in 
MDR resistance in addition to helping to transport molecules that are important for cell 
signaling, and because they are common, there is a real danger that we could soon return to a 
time before antibiotics. According to recent research, cells may use the efflux systems as the 
initial step of defence to prevent drugs from reaching deadly concentrations while waiting for a 
stable, more effective modification to occur. The primary facilitator superfamily-belonging S. 
aureus efflux pump NorA imparts resistance to various substrates. Even though many EPI i.e 
inhibitors of the efflux pump have been found, from them, no one has received clinical approval 
because of unfavourable toxicity. In this review article, we will discuss the current 
understanding of the MDR efflux pump and its clinical importance, concentrating on current 
discoveries on the efflux system of S. aureus, and the regulation of efflux pump based on 
protein/gene expression, and emphasize significant genes and proteins along with their PDB 
IDs. 
 

Introduction 
One of the defining moments in medicine in the 20th 
century was the development of antibiotics for the treatment 
of various infections. However, the first germs exhibiting 
antibiotic resistance were described not long after they were 
first used in clinical settings. But since, the development of 
new antibiotics has coincided with an ongoing increase in 
the number of microbial strains that are resistant to them as 
well as a diversity of strategies employed by bacteria to 
evade their fatal effects. Today, each class of widely used 
antibiotics has at least one documented mechanism of 
resistance [1]. Additionally, many bacterial species exhibit 

phenotypes that are multi-resistant. Numerous of these 
multidrug-resistant (MDR) bacteria can result in infections 
that are fatal, which makes them a serious issue for both the 
community and the hospital [2, 3]. 
One of the main bacterial pathogens, Gram-positive 
Staphylococcus aureus, can cause infections that are mild to 
fatal [4]. S. aureus exhibits a surprising range of resistance 
pathways along with its potential pathogenicity [5]. The 
MRSA i.e methicillin-resistant S. aureus strains, which have 
become increasingly isolated from the general population 

and are resistant to every type of β-lactam antibiotics, are a 
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serious issue. For many years, these strains were a major 
cause of outbreaks in nosocomial settings [6]. 

There are many ways that bacteria can resist antibiotics, 
including degradation or alteration of the antibiotic, 
switching the antibiotic's bacterial target, safeguarding the 
target, and lowering the intracellular concentration of the 
antibiotic through either reduced permeability to cell wall or 
antibiotic efflux from the cell. Resistance mediated by 
efflux, in contrast to the other recognised mechanisms, has 
received less attention [7]. 
S. aureus is a persistent pathogen that silently persists as our 
natural flora but occasionally poses a threat to our lives. Its 
multi-drug resistance phenotype makes it one of the most 
unbeatable pathogenic bacteria in the history of antibiotic 
treatment, in addition to its capacity to outsmart human 
immune system. Almost every antibiotic created since the 
1940s was defeated by it. The first MRSA was discovered in 
clinical isolates of S. aureus in 1961 [98]. Methicillin and 
vancomycin resistance are the two most notable antibiotic 
resistances that Staphylococcus aureus has attained. A 
special staphylococcal mobile genetic element facilitated the 
interspecies transfer of the mecA gene from an ancestral 
Staphylococcus species to S. aureus, resulting in methicillin 
resistance. By horizontally transferring a plasmid-born 
vanA-gene transposon from vancomycin-resistant 
Enteriococcus to S. aureus across the genus barrier, 
vancomycin resistance was attained. The other kind of 
vancomycin resistance, known as VISA, is brought about by 
adaptive mutations that are integrated into the genes that 
control the physiology of bacterial cells [8,9]. Comparative 
genomics of paired S. aureus isolates has been used in 
several studies to identify mutations that arise in the resistant 
strain relative to the parent strain. One of the most notable of 
these studies was conducted by Mwangi et al., which found 
that accumulating mutations in the increasingly resistant 
strain were linked to increasing vancomycin resistance in 
successive clinical isolates of S. aureus [9]. 
The topic has, however, become more popular as we have 
come to understand that a large number of efflux pumps 
have the ability to remove from the cell a variety of different 
classes of antimicrobial compounds, which promotes the 
emergence of resistant strains phenotypes [8]. Drugs may be 
"accidental substrates" of these transporters due to natural 
involvement of efflux system in bacteria's ability to 
eliminate harmful endogenous metabolites, secrete virulence 
inhibitors, and respond to stress [9, 10].  

 
Efflux pump 
When tetracycline resistance in enterobacteria was found to 
be a mechanism in 1980, antibiotic efflux was first 
identified. Over the years, bacterial resistance to almost all 
antibiotics has been associated with efflux mechanisms. The 
zones of inhibition (MIC) of substrate antibiotics is typically 
two to eight times higher for bacteria overexpressing an 
efflux pump than for a susceptible strain of that species [11]. 

Efflux system in bacteria 
Bacterial efflux systems can either be specialized, extruding 
only one antibiotic or class of antibiotics, or they can be 
multidrug-resistant efflux pumps, capable of extruding 
numerous classes of antimicrobial chemicals. The major 
facilitator superfamily (MFS), the small multidrug resistance 
(SMR) family, the multidrug and toxic compound extrusion 
(MATE) family, the resistance-nodulation-cell division 
(RND) superfamily, and the adenosine triphosphate (ATP)-
binding cassette (ABC) superfamily are the five families that 
these MDR efflux systems are divided into based on their 
energy requirements and structural characteristics. The 
transporters of the first four families are secondary 
transporters that drive the extrusion of their substrates by an 
antiport H+: drug mechanism, with the exception of the 
family MATE, which may also take energy from the sodium 
membrane gradient. In contrast, the ABC superfamily of 
transporters are the main transporters that propel the ejection 
of their substrates using ATP as given in figure 1 [12]. 
 

Antimicrobial resistance mediated by efflux pump 
Changes in drug targets, structural alterations or drug 
degradation, reduced outer membrane proteins permeability 
to stop medications to enter cells, and improved transporters 
are the basis for antimicrobial resistance mechanisms.to 
lower medication concentrations inside cells. It was 
previously thought that protein of outer membrane and 
efflux pumps did not work together to reduce intracellular 
drug concentrations. In Burkholderia thailandensis, a recent 
study discovered a connection of efflux pumps and the 
membrane permeability barrier [14]. In reality, efflux pump 
overexpression is an important factor in the development of 
MDR as well as antimicrobial resistance. The creation of 
efflux pump inhibitors depends critically on our knowledge 
of the chemical structures of pumps and the important drug-
binding sites on those molecules. Following a thorough 
study of the architectures of various efflux pump families, it 
will be briefly described [15, 16]. 
 
Efflux pumps role in virulence and formation 
It has been demonstrated that bile salts and other 
antimicrobials produced from the host facilitate colonisation 
and enhance bacterial adaptation to the host digestive system 
through efflux [17]. The RND Efflux pump AcrAB-TolC, 
which is mostly implicated in drug efflux in E. coli, can also 
pass on bile salt resistance [18]. Complex microbial 
communities known as biofilms adhere to many surfaces, 
including implanted gadgets like urine catheters. It is 
commonly known that bacteria that have formed biofilms 
are more susceptible to antibiotics than germs in the water. 
In various bacterial species, the connection between the 
antimicrobial resistance of biofilm and EPs has been 
documented [19]. 
 



Mohammad Abuzar et al., JIPBS, Vol 11 (4): 22-35, 2024 

24 

 

Figure 1. Five classes of multidrug efflux pumps with examples in S. aureus [13]. 

 
Multidrug-resistant efflux pumps encoded by 
chromosomes 
NorA  
On S. aureus NorA is the extensively researched efflux 
systems drug efflux pump. A resistant isolate of 
fluoroquinolone found in a Japan hospital in 1986 was the 
first to carry the gene NorA that encodes it [20]. With three 
norA alleles that have been reported to far and nucleotide 
sequence differences of up to 10%, the norA gene exhibits 
some genetic variation [21, 22, 23]. The 388 amino acid 
protein NorA, which is part of the MFS and has 12 
transmembrane segments, is identical to the multidrug Bmr 
efflux pump from B. subtilis in 44% of the ways and to the 
tetracycline Tet(A) efflux pump from E. coli in 24% of the 
ways [24, 25].  
According to several investigations, NorA can extrude a 
wide variety of chemically different molecules, including 
fluoroquinolones (hydrophilic) like ciprofloxacin and 
norfloxacin, ethidium bromide like dye, and quaternary 
ammonium (biocide) compounds [26]. Since norA is known 
to express at a basal level, this lower sensitivity to certain 
antimicrobial agents can be partially explained [27]. 
Through the enhanced expression of the norA, efflux 
mediated by NorA has been linked to greater resistance to 
fluoroquinolones, biocides, and dyes [26, 29, 30]. 
Depending on the mutations that have been acquired in the 
promoter region of gene NorA, this enhanced expression 
may be either constitutive or inducible [28]. The details of 
efflux pumps are listed in Table 1. 
 
NorB 
The proof for existence of additional mechanisms of efflux 
in the S. aureus chromosome has been accumulated since 

the initial experiments in NorA [31, 32]. The NorA and 
QacA S. aureus efflux pumps, as well as the Blt efflux 
pumps (41%) and Bmr of B. subtilis (30%), share structural 
similarities with the efflux pump NorB. It is a 463 amino 
acid MFS proton-driven efflux pump with 12 segments of 
transmembrane. NorB imparts resistance to some substrates 
of NorA, including the hydrophobic fluoroquinolones 
moxifloxacin and sparfloxacin, the tetraphenylphosphonium 
biocide and cetrimide, and tetracycline. It also imparts 
resistance to substrates of non-NorA, including the 
hydrophilic norfloxacin and ciprofloxacin [33].  
NorB may have a role in the pathogenesis of staphylococcal 
bacteria, according to research using subcutaneous abscess 
model of mouse that demonstrated its importance for S. 
aureus competitiveness [34].  According to subsequent 
investigations from the same team, NorB may have a role in 
S. aureus reaction to acidic shock and decreased airflow, 
conditions that led to the overexpression of the norB gene 
[35, 36]. 
 
NorC 
The norC chromosomal gene encodes efflux pump norC. Its 
an MFS protein with 462 amino acids and 12 
transmembrane segments that is 61% identical to NorB [37]. 
NorC is linked to low-level resistance to ciprofloxacin, 
moxifloxacin, garenoxacin, and the dye rhodamine, as well 
as hydrophilic and hydrophobic fluoroquinolones [37, 38]. 

Studies have shown that norC overexpression is necessary to 
establish low-level resistance because norC wild-type 
expression does not appear to be adequate to influence the 
sensitivity to these compounds [37].  
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Table 1. MDR efflux pump of chromosomes and plasmid along with family, substrate and regulators. 
Sr. 
No. 

Efflux pump Substrate for efflux pump Efflux 
pump 
family 

Regulator 
of efflux 
pump 

References 

 Multidrug-resistant 
efflux pumps encoded 
by chromosomes 

1 NorA Ciprofloxacin, norfloxacin, 
tetraphenylphosphonium, 
benzalkonium chloride, ethidium 
bromide, rhodamine 

MFS MgrA, NorR, 
NorG* 

2, 21 

2 NorB Ciprofloxacin, norfloxacin, 
moxifloxacin, sparfloxacin, 
Tetracycline, tetraphenyl phosphonium, 
cetrimide ethidium bromide 

MFS MgrA, NorG 31, 32, 33 

3 NorC Ciprofloxacin and moxifloxacin 
rhodamine 

MFS MgrA, NorG 37, 38 

4 MepA Fluoroquinolones (e.g. hydrophilic: 
ciprofloxacin, sparfloxacin, norfloxacin 
moxifloxacin, Tigecycline, 
tetraphenylphosphonium, 
benzalkonium chloride, cetrimide, 
ethidium bromide) 

MATE MepR 39 

5 MdeA Ciprofloxacin, mupirocin, norfloxacin, 
fusidic acid, Virginiamycin, 
novobiocin, tetraphenylphosphonium, 
benzalkonium chloride, dequalinium, 
ethidium bromide 

MFS Not identified 41, 42 

6 SepA benzalk-onium chloride, chlorhexidine 
gluconate and the dye acriflavine 

N/I Not identified 43 

7 SdrM Norfloxacin, ethidium bromide, 
acriflavine 

MFS Not identified 44 

8 LmrS Erythromycin, linezolid, 
choramphenicol, fusidic acid 
kanamycin, florfenicol Trimethoprim, 
tetraphenylphosphonium, sodium 
docecyl sulphate, ethidium bromide 

MFS Not identified 45 

 Multidrug-resistant efflux pumps encoded by plasmid 

9 QacA/B Benzalkonium chloride, dequalinium 
Diamidines, Biguanidines, 
tetraphenylphosphonium, ethidium 
bromide, rhodamine 

MFS QacR 46, 47, 48 

10 Smr Cetrimide, benzalkonium chloride, 
ethidium bromide 

SMR Not identified 53, 54, 57 

11 QacG Benzalkonium chloride, 
cetyltrimethylammonium, ethidium 
bromide 

SMR Not identified 60 

12 QacH Benzalkonium chloride, cetyltrimethyl 
ammonium, Proflavin 

SMR Not identified 61 

13 QacJ Benzalkonium chloride, cetyltrimethyl 
ammonium, ethidium bromide 

SMR Not identified 62 

 
MepA 
MepA was discovered in research using mutants of S. 
aureus with norA disrupted [39]. It was the first multidrug 
transporter from the MATE family to be described in S. 
aureus. It is encoded by the chromosomal mepA gene. 12 
transmembrane segments make up this 451amino acid 
protein, which shares 26% and 21% of its amino acid 
sequence with the CdeA from Clostridium difficile and 

NorM of Vibrio parahaemolyticus (MATE) transporter 
respectively. MepA was discovered to be linked to an 
Resistant phenotype, which confers Reduced resistance to 
quaternary ammonium substances like cetrimide, 
benzalkonium chloride, tetraphenyl-phosphonium, 
dequalinium, and ethidium bromide dye, as well as to 
pentamidine, chlorhexidine, and tigecycline, a glycylcycline 
antibiotic. Norfloxacin and ciprofloxacin were found to be 
ineffective substrate of MepA gene [39, 40]. The mepRAB 
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operon contains the mepA gene. The encoded MepR  
protein shares similarities with MarR family regulatory 
proteins, according to sequence analysis. MepB and other 
proteins with recognized functions were not found to have 
any significant similarities, and there was no correlation 
between the MepB gene and Resistant Multidrug 
phenotypes [39]. 
 
mdeA 
An open expression library of the genome of S. aureus 
revealed the chromosomal mdeA gene, which encodes the 
efflux pump MdeA. MdeA is a member of the MFS, has 
479 amino acids, and 14 transmembrane segments, and uses 
the proton motive force to energise the transport of its 
substrates. MdeA and the efflux pump LmrB from B. 
subtilis, EmrB from E. coli, and QacA from S. aureus share 
37% of their genetic makeup. The overexpression of mdeA 
has been connected to increased resistance to the biocides 
(e.g. benzalkonium chloride, dequalinium, and 
tetraphenylphosphonium), the dye (e.g. ethidium bromide), 
and the antibiotics (e.g. virginiamycin, novobiocin, 
mupirocin, and fusidic acid). Mutations that occur in the 
mdeA promoter area can cause the overexpression of mdeA, 
but they only slightly increase the phenotype of MDR 
resistance [41]. The norfloxacin and ciprofloxacin 
(fluoroquinolones) are less active substrates of this pump, 
according to a subsequent study [42]. 
 
SepA 
As an efflux pump, the SepA protein, which is coded by the 
chromosomal sepA gene, confers Reduced antiseptic 
resistance (e.g. benzalkonium chloride, chlorhexidine 
gluconate, and the acriflavine dye. This transporter has four 
putative transmembrane segments and 157 amino acids, 
which are shared by SMR family transporters. SepA lacks 
the conserved motifs of this family even though several 
residues essential for the transport specificity and the 
antiport H+: drug are present in a different place., which 
raises the possibility that it may be a member of an 
unidentified family of transporters [43]. 
 
SdrM 
The chromosomal gene sdrM codes for the efflux pump 
SdrM. The pumps NorB and QacA S. aureus Resistant 
efflux share 23% and 21% of their identity with SdrM, 
respectively. Sequence research suggests that SdrM, which 
has 14 transmembrane segments, maybe a member of the 
MFS. By encouraging an energy-dependent outflow of these 
substances, it was demonstrated that this efflux pump is 
linked to Reduced resistance to ethidium bromide, 
acriflavine, and norfloxacin [44]. 
 
LmrS 
lincomycin resistance protein S. aureus i.e LmrS was 
recently characterized by Floyd and colleagues. t is 39% 
identical to the B. subtilis lincomycin resistance protein 

LmrB and 25% identical to the efflux pumps FarB 
(Neisseria gonorrhoeae) and EmrB (E. coli) The improved 
linezolid resistance, sodium dodecyl sulphate, tetraphenyl 
phosphonium chloride, chloramphenicol, and trimethoprim, 
was attributed to LmrS, a 480 amino acid MFS protein with 
14 putative membrane-spanning domains [45]. 
 
Multidrug-resistant efflux pumps encoded by plasmid 
 
QacA/B 
Clinical isolates of S. aureus carries pSK1 plasmid, a 
resistance-conferring gene to a variety of disinfectants and 
antiseptics was discovered in the early 1980s [46]. The 
QacA gene member of the MFS, which has 514 amino acids 
and 14 transmembrane segments, is encoded by this gene, 
which was later given the name qacA [47]. Large 
conjugative plasmids from coagulase-negative staphylococci 
as well as strains of S. aureus include the qacA gene [48]. 
From 12 different chemical classes more than 30 mono and 
divalent cations (lipophilic), including dyes (e.g. ethidium 
bromide and rhodamine), quaternary ammonium 
compounds (e.g. tetraphenyl phosphonium, benzalkonium 
chloride, and dequalinium, diamidines (e.g. DPAI and 
pentaamine), biguanidines (guanylhydrazones, and 
chlorhexidine) are used. The proton motive force drives the 
transport of these substrates through an antiport H+: drug 
mechanism [49-52]. 

 
Smr 
The smr efflux pump gene, which confers resistance of 
ethidium bromide and antiseptic, was discovered in 
numerous plasmids by several groups in the late 1980s. The 
determinants identified by these authors as belonging to this 
gene were given the names ebr, qacC/D, or smr [53-55] but 
sequencing examination revealed that these all determinants 
identical. Smr gene, which encodes the efflux pump Smr, 
can be seen in S. aureus as well as staphylococci (coagulase-
negative) in the form of tiny non-conjugative plasmids 
(pSK89) or big conjugative plasmids (pSK41) [56, 57]. 
Smr, which comprises 107 amino acids and four 
transmembrane segments, is a member of the SMR family 
and uses the proton motive force to energise the transport of 
toxic chemicals, according to hydropathy research. 
Comparing this efflux pump to QacA/B, a smaller subset of 
chemicals cationic dyes (ethidium bromide) and quaternary 
ammonium compounds (benzalkonium chloride) convey 
reduced resistance.  Smr may undertake efflux, as 
demonstrated by in vitro transport tests using pure Smr gene 
and a site-directed mutagenesis, albeit it is unclear whether 
this is done as an oligomer or monomer as is the case for 
other efflux pumps in the family of SMR [58, 59]. 

 
QacG 
S. aureus isolates gathered from the food sector included the 
efflux pump gene qacG. The plasmid pST94 (2.3 kb) 
contained the gene in question. It codes the efflux pump 
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QacG, a member of the SMR of transporters with one 
hundred and seven amino acids and four segments of 
transmembrane [60]. 
 
QacH  
QacH is 69.2% identical to smr efflux pump. The S. 
saprophyticus food sector strain contained a 2.4 kb isolated 
plasmid that contained the determinant qacH for the first 
time. The efflux pump QacH, which has one hundred and 
seven amino acids and four segments of transmembrane. and 
is a SMR member, is encoded by the qacH, which shares 
76% of its nucleotides with the smr gene and 70% of its 
nucleotides with the qacG gene [61]. 
 
QacJ 
S. aureus, S. simulans, and S. intermedius staphylococcal 
species all obtained from horses, were discovered to share 
the qacJ efflux pump gene on a plasmid (2.65 kb). The 
encoded efflux pump QacJ is 72.5% identical to Smr, and 
73.4% and 82.6% identical to QacH and QacG efflux pumps 
respectively. It is a member of the SMR and has 107 amino 
acids and four segments of transmembrane. All of these 
pumps have equal specificities for substrate, imparting same 
levels of resistance to ethidium bromide, benzalkonium 
chloride, and cetyltrimethylammonium bromide. This is true 
even though the QacG/H/J amino acid having different 
sequences than Smr [62]. 
 
Clinical values and significance of efflux pumps  
Efflux pump inhibitors are prospective antibacterial 
medicines because of the extensive distribution of efflux 
pump gene in bacteria S. aureus and the strong link with 
resistance to antibiotics in the clinic. Inhibiting efflux pumps 
is anticipated to have the following effects: 
i) Reactivating antibiotics that were previously made 

inactive by the extrusion method;  

ii) Lowering the frequency of occurrence of 
mutants(resistant); and 

iii) Lowering the sensitivity of the bacteria, as shown 
in figure number 2. 

Over the last ten years lot of research have been undertaken 
to find efflux pump inhibitors that are effective against S. 
aureus, with a particular focus on NorA [63,64]. Reserpine 
and phenothiazines are two antipsychotic/antihypertensive 
medications that have been shown to inhibit S. aureus efflux 
pumps, although their use has been restricted due to their 
cytotoxicity [65]. 
Bacteria's natural defensive mechanism against dangerous 
compounds in their ecological environment is the efflux of 
antibacterial agents. In order to compete with other bacterial 
pathogens, eukaryotic hosts, and other bacteria, bacterial 
pathogens have evolved to withstand a variety of antibiotic 
compounds. Since efflux pumps are the initial step of 
defence against antibacterial agents, their inherent function 
may be a defence against such naturally occurring 
compounds. While the intrinsic activity function of efflux 
pumps has primarily been studied in species of Gram-
negative and Gram-positive (S. aureus) [66,67]. Drug efflux-
mediated clinically meaningful resistance in bacteria can 
include biocides, antibiotics, or both. The extrusion of 
multiple classes of antibiotics by MDR efflux pumps, like 
the ones discussed in this review, or efflux systems that can 
extrude a single class of antibiotics, like the Tet 
determinants that transmit resistance to tetracycline, are 
examples of efflux-mediated antibiotic resistance. A 
multidrug resistance phenotype might arise from the 
overexpression of MDR efflux pumps because of their 
promiscuous substrate selectivity, which can increase 
resistance to many antibiotic classes while simultaneously 
decreasing susceptibility to biocides [112,113].  

 

 
Figure 2. Clinical significance of bacterial EPs function [66, 67]. 
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Assessment of efflux activity 
One must ensure that the methodology used is the most 
suitable to reveal efflux activity in order to completely 
determine the function that a particular efflux system plays 
in antibiotic and/or biocide resistance. The majority of 
research on efflux-mediated resistance in clinical isolates of 
S. aureus uses the so-called efflux inhibitors, which are 
substances that have been shown to impede efflux activity, 
to lower the antibiotic minimum inhibitory concentration 
(MIC) [101, 102]. This method is time-consuming and 
depends on how susceptible the efflux system or systems are 
to that specific inhibitor, which can vary greatly and for 
which the cellular mechanism of action is typically still 
unclear [103-105].  
Ethidium bromide, an extensive variety of efflux pump 
substrate, has been investigated more recently as a means of 
measuring efflux activity in S. aureus cells. The Ethidium 
Bromide-Agar Cartwheel Method, which assesses the cells' 
ability to retain/extrude ethidium bromide after an overnight 
stay [106], the measurement of ethidium bromide MICs to 
identify S. aureus strains that exhibit increased efflux 
activity [107, 108] in the the presence or absence of efflux 
inhibitors [109, 110], or assays that directly assess the efflux 
activity using real-time fluorometry [111] are examples of 
how this substance can be used as a marker for the indirect 
evaluation of efflux activity. 
 
Regulation and application of efflux pumps related to 
protein/gene expression 
 
Mechanism of efflux pump regulation  
Various regulatory systems and proteins also have a role in 
controlling efflux pump expression, in addition to exposure 
to disinfectants or antibacterials. Currently, single MDR 
pump regulatory proteins are mostly categorised into four 
groups:  MarR, MerR, AraC, and TetR [68]. Both domains 
ligand-binding and DNA-binding are present in these 
regulatory proteins. tet genes related to efflux, which 
provide tetracyclines resistance, are controlled in expression 
by the TetR, a transcriptional repressor that depends on 
substrate [69]. Overexpression of the new MATE efflux 
pump FepA leads to fluoroquinolone resistance. The 
norfloxacin and ciprofloxacin MIC values in L. 
monocytogenes are raised as a result of a TetR-type 
repressor FepR, which controls it [70]. MgrA controls the 
ABC efflux pump AbcA, the non-MDR tetracycline efflux 
pump Tet38, and the three S. aureus MDR efflux pumps 
NorA, NorB, and NorC [113]. 
For instance, it is known that the regulation systems, AcrR, 
Rob, EnvR, MprA, MarA, PhoP, and RpoE all have a role in 
the regulation of AcrAB (E. coli). These regulatory 
mechanisms are triggered by signals from the environment, 
such as pH, antimicrobial concentrations, organic 
solvents, metal ions, growth phase, and oxidative stress [71].  

Certain regulators can also alter the transcription of the 
genes that code for certain MDR efflux pumps in S. aureus. 
For MepA and QacA/B, which are regulated by MepR and 
QacR, respectively, this is true. Both of these regulators are 
sensors that bind to the MDR efflux pumps' substrates and 
trigger their expression, making them substrate-responsive 
regulators [113]. MepR is a self-repressive protein that 
attaches to the motif GTTAG, which is found in the 
promoter areas of mepR and mepA, as well as to sequences 
that contain pseudo palindromes. The mepB promoter 
region is not bound by MepR [114]. MepR binds to the 
mepA promoter more strongly than it does to the mepR 
promoter, and the ratio of this binding is most likely 
different [115].  
The gene qacR, which is located just upstream of the genes 
qacA and qacB, which are transcribed differently from these 
genes, encodes QacR. QacR is a member of the TetR family 
of transcriptional repressors and has a helix-turn-helix DNA 
binding motif that is typical of regulatory proteins [116]. By 
attaching itself to the qacA promoter, QacR has been 
demonstrated to be a direct suppressor of the qacA gene's 
expression [117]. QacR attaches itself to a big inverted 
repeat that crosses over the qacA/B transcription start sites 
and is situated directly downstream of the qacA/B promoters 
[118]. 
 
Antibiotic residue detection using efflux pump 
proteins 
Only two regulatory proteins, TetR and TtgR, are utilized to 
screen for antibiotic residues at this time; proteins related to 
efflux pump are still being studied for this purpose (belong 
to TetR family). Utilizing proteins involved in gene 
transcription, a concentration of low antibiotics might be 
detected efficiently [72]. Hyerim et al. proposed a 
bioreporter technique focused on TetR and the TetR 
promoter for detecting doxycycline using a green fluorescent 
protein (GFP) gene as a reporter gene. GFP could 
be expressed in significant numbers in response to 5nM 
doxycycline [73]. Tetracycline antibiotics may be precisely 
and promptly determined using an in-vitro indirect 
ELISA developed by Weber et al. utilizing TetR-tetO, with 
limit of detection 0.1 and 1.9 ng/mL of doxycycline and 
tetracycline, respectively [74]. Furthermore, Espinosa-Urgel 
et al. proposed a unique microbial biosensor centered on 
TtgR that estimates drug concentrations as low as 22 M with 
high fluorescence. According to research, drugs such as 
ceftazidime, ciprofloxacin, and tetracyclines which are P. 
putida's GFP-fused TtgR, a TtgABC efflux pump 
transcription regulator, react the most [75].  
 
Antibiotic residue detection using gene expression 
Resistant efflux pumps in microorganisms cause them to be 
naturally or unavoidably resistant to antimicrobial drugs. 
The efflux pumps' constituent or regulatory proteins, which 
serve as the first line of defence against medications and 
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ensure the bacteria's survival, are encoded by the resistance-
related genes [76]. Antimicrobial resistance can be quickly 
detected using a variety of efflux pump genes, which can 
then be successfully confirmed using identification by PCR 
and determination of MIC. The RND pumps are capable of 
recognizing various substrates, causing the majority of 
medicines to be extruded and boosting antimicrobial 
resistance. Examples include E. coli's Acr pump, A. 
baumannii's Ade pump, and P. aeruginosa's Mex pump [77, 
78]. 
Additionally, MICs and high levels of resistance are linked 
to several single-substrate efflux pumps. These single-
substrate efflux proteins include the tetracycline-mediated 
efflux pump TetA/TetO in E. coli [79], the fluoroquinolones 
(hydrophilic) efflux pump OqxAB from S. enterica and E. 

coli, and MacAB the macrolide efflux pumps in E. coli and 
Mef in S. pneumoniae [80, 81]. 
Including PDB IDs for various efflux pumps in the review, 
article is highly significant as it provides researchers with 
precise structural information required for computational 
drug design and target-specific studies. These PDB IDs 
serve as a critical resource for understanding the three-
dimensional structure and molecular dynamics of efflux 
pumps, enabling the identification of potential binding sites 
and the development of inhibitors to overcome multidrug 
resistance. By consolidating this information in a single 
table, the article facilitates streamlined access to essential 
data, promoting further research and innovation in targeting 
efflux pump proteins for therapeutic intervention. Table 2 
and 3. 

 
Table 2. Structure and PDB IDs of efflux gene regulators. 

Efflux Pump regulators PDB 
IDs 

Description Structure References 

Mgr A 2BV6 
 

Crystal structure of MgrA, 
a global regulator and 
major virulence 
determinant in 
Staphylococcus aureus 
 

 

 

[119] 

Mep R 3ECO 
 

Crystal structure of MepR, 
a transcription regulator of 
the Staphylococcus aureus 
multidrug efflux pump 
MepA 
 

 

 
 

[120] 

QacA 7Y58 
 

CryoEM structure of QacA 
(D411N), an antibacterial 
efflux transporter from 
Staphylococcus aureus 

 

 
 

[121] 
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QacR 2GBY 
 

Structure of QacR 
Multidrug Transcriptional 
Regulator Bound to 
Bivalent Diamidine Berenil 

 
 

[122] 

 
Table 3. PDB IDs for the various efflux pumps. 

Sr. No PDB ID Description Efflux pump References 

1 7LO7 NorA in complex with Fab25 NorA 84 
2 7LO8 NorA in complex with Fab36 NorA 84 

3 8TTE Protonated state of NorA at pH 5.0 NorA 85 
4 8TTF NorA single mutant - E222Q at pH 7.5 NorA 85 

5 8TTG NorA double mutant - E222QD307N at pH 7.5 NorA 85 

6 8TTH NorA single mutant - D307N at pH 7.5 NorA 85 

7 7D5Q Structure of NorC transporter (K398A mutant) in an 
outward-open conformation in complex with a single-
chain Indian camelid antibody 

NorC 86 

8 7D5P Structure of NorC transporter in an outward-open 
conformation in complex with a single-chain Indian 
camelid antibody 

NorC 86 

9 4XYD Nitric oxide reductase from Roseobacter denitrificans 
(RdNOR) 

NorC 87 

10 4LQE Crystal Structure of MepB MepB 88 
11 3ECO 

 
Crystal structure of MepR, a transcription regulator of 
the Staphylococcus aureus multidrug efflux pump 
MepA 

MepR 89 

12 5FFZ S. aureus MepR bound to ethidium bromide MepR 90 

13 5FFX S. aureus MepR G34K Mutant MepR 91 
14 4L9N Crystal structure of MepR A103V mutant from 

multidrug resistant S. aureus clinical isolate 4L9N 
MepR 92 

15 5J44 
 

Crystal structure of the Secreted Extracellular protein 
A (SepA) from Shigella flexneri 

SepA 93 

16 7Y58 
 

CryoEM structure of QacA (D411N), an antibacterial 
efflux transporter from Staphylococcus aureus 

QacA 94 

17 2VKC Solution structure of the B3BP Smr domain Smr 95 

18 3NPI 
 

Crystal structure of a TetR family regulatory protein 
(DIP1788) from CORYNEBACTERIUM 
DIPHTHERIAE at 2.96 A resolution 

TetR 96 

19 2UXH TtgR in complex with Quercetin TtgR 97 

 
Conclusions and future perspectives 
Resistance to traditional antibiotics has grown significantly 
since the last few decades, posing a serious danger to 
antibacterial chemotherapy regimens used to treat a variety 
of persistent, life-threatening infections. There may someday 
be no viable antibiotics available for therapy due to the 
alarming rise in multidrug-resistant bacteria. This situation is 
referred to as "the post antibiotic age." Antibiotic active 
efflux, particularly through multidrug efflux pumps, is 
regarded as a significant mechanism of multidrug resistance  

 
 
for the emergence of resistance to antibiotic, and survival of 
bacteria in the environment in bacteria. Therefore, it makes 
sense to suppress bacterial efflux pumps in order to 
counteract multidrug resistance. By restoring the lost 
potency that active extrusion via pumps caused in existing 
antibiotics, efflux pumps inhibition is anticipated for 
improving their efficacy. Blocking efflux pumps would also 
lessen bacterial pathogenicity, the emergence of resistance to 
antibiotic, and bacterial survival in the surrounding [99]. 
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Drug efflux pumps, an important factor in the resistance 
mechanism, has drawn a lot of interest from researchers 
working to tackle drug resistance. To improve the clinical 
efficiency of antibiotic, pathogenic S. aureus, MRSA can be 
treated with efflux pump inhibitor strategies. Due to these 
potential consequences, research on efflux pumps has been 
greatly accelerated, and S. aureus and other bacterial 
pathogens have benefited from the development of efflux 
pump inhibitors [100]. To create efficient efflux pump 
inhibitors, it is required to investigate the inhibitory 
mechanisms and conduct potential inhibitors testing by in-
vivo studies. Additionally, a deeper comprehension of the 
design, mechanisms, control and relationship of the efflux 
pumps with clinical antibiotics resistance would make it 
possible to create better medications that are less vulnerable 
to bacterial resistance. 
Researchers looking to investigate the structural Aspects and 
molecular of multidrug resistance will find PDB IDs helpful 
for important proteins and genes linked to the S. aureus 
efflux pumps. These structural understanding may help 
overcome current challenges in the war against antibiotic-
resistant bacteria by enhancing the development of novel 
treatment approaches and targeted inhibitors. Future 
researcher can integrate the better understand the molecular 
and structural mechanisms of resistance by utilizing these 
PDB IDs, opening the door to more potential and practically 
applicable approaches. 
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