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Abstract 

 
The DPP-4 and DPP-8 inhibitory activity of triazolopiperazines have been quantitatively 
analyzed in terms of 3D-Dragon descriptors. The derived QSAR models have shown that atomic 
properties played pivotal role in terms of weighted radial distribution functions, 3D-MoRSE 
signals, component symmetry directional WHIM index and moment expansions. The CP-MLR 
indentified RDF, 3D-MoRSE, WHIM and GETAWAY descriptors, unweighted or weighted 
with atomic properties endow relevant molecular 3D informations about molecular size, shape, 
symmetry, atom distribution, effective position of substituents and fragments in the molecular 
space, hold promise for rationalizing the DPP-4 and DPP-8 inhibitory actions of 
triazolopiperazines. The values of statistical parameters, Q2LOO and r2Test ensure that the models 
have validated internally and externally, both and the predictions are reliable and acceptable. 

PLS analysis has further confirmed the dominance of the CP‐MLR identified descriptors. 
Applicability domain analysis revealed that the suggested models have acceptable predictability. 
All the compounds are within the applicability domain of the proposed models and were 
evaluated correctly. 
 

Introduction 
 
Elevated plasma glucose in the presence of high 
endogenous insulin levels is characteristic of type 2 
diabetes (T2D). T2D is a chronic disease and causes 
serious vascular complications, significant morbidity, and 
mortality. This metabolic disorder may be considered as a 
growing public health problem [1]. The T2D therapies, 
which increase the concentration of circulating insulin, 
are favorable therapeutically but show some undesirable 
side effects like weight gain and hypoglycemia [2]. A 
new potential approach for the treatment of T2D is based 
on inhibition of a serine protease the dipeptidyl peptidase 
IV (DPP-4a) [3-6]. DPP-4 inhibitors are indirect 
stimulators of insulin secretion and this stimulation is 
mediated by boosting the action of the incretin hormone 
glucagon-like peptide 1 (GLP-1). Ingestion of food 
releases this hormone in the gut. The stimulation of 

insulin biosynthesis and secretion and inhibition of 
release of glucagon is caused, in turn, by GLP-1 [7-13]. 
The GLP-1 therapy is beneficiary due to the regulation of 
insulin in a strictly glucose-dependent manner. Little or 
no risk of hypoglycemia, slowing down of gastric 
emptying [14, 15] and reduction of appetite [16] are the 
beneficial effects of GLP-1 therapy.  

A potential role in restoration of -cell function in 
rodents point out that this mechanism may actually slow 
or even reverse disease progression [17-22]. DPP-4 
degrades GLP-1, which cleaves a dipeptide from the N-
terminus to give the inactive GLP-1[9–36] amide [23, 
24]. As a result of inhibition of DPP-4 the half-life of 
GLP-1 is increased and thus the beneficial effects of this 
incretin hormone are prolonged. Sitagliptin [25, 26], 
LAF-237 [27] and BMS-477118 [28] are examples of 
DPP-4 inhibitors. Detailed structure–activity relationships 
(SARs) of Sitagliptin scaffold as DPP-4 inhibitors are 
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reported in literature with a variety of substituents on the 
left phenyl and the right triazolopiperazine [29]. Alkyl 

substitution around the -aminoamide backbone was 
found to be detrimental to potency. Other modifications 
such as lengthening, shortening, or tethering along with 
alkyl substitution of triazolopiperazine series were 
discarded due to the similar ineffective SAR trends of 
corresponding thiazolidine [30] and the piperazine series 

[31]. A series of -aminoamides bearing 
triazolopiperazines having alkyl substitutions around the 
triazolopiperazine moiety has been reported by Kim et al. 
[32]. The aim of present communication is to establish 
the quantitative relationships between the reported 
activities and molecular descriptors unfolding the 
substitutional changes in titled compounds. 
 
Materials and methods  
 
Biological actions and theoretical molecular 

descriptors 

The reported thirtynine -aminoamides bearing 
triazolopiperazine derivatives are considered as the data 
set for this study [32]. The structural variations of these 
analogues are mentioned in Table 1. These compounds 
were evaluated in vitro for their inhibition of DPP-4 and 
DPP-8. The reported inhibitory activity in terms of 
IC50(nM) of these congeners is also presented in Table 1. 
For modeling purpose the data set has been sub-divided 
into training set (for model development) and test set (for 
external prediction or validation). The selection of test set 
compounds was made using an in-house written 
randomization program. The test and training set 
compounds are also mentioned in Table 1. 
The structures of the all the compounds (listed in Table 1) 
were drawn in 2D ChemDraw [33] and subjected to 
energy minimization in the MOPAC using the AM1 
procedure for closed shell system after converting these 
into 3D modules. The energy minimization was carried 
out to attain a well defined conformer relationship among 
the congeners under study. The 3D-molecular descriptors 
of titled compounds were computed using DRAGON 
software [34]. This software offers a large number of 
descriptors corresponding to eight different classes of 3D-
descriptor modules. The different 3D-descriptor classes 
include charge descriptors, aromaticity indices, Randic 
molecular profiles, geometrical descriptors, RDF 
descriptors, 3D-MoRSE descriptors, WHIM descriptors 
and GETAWAY descriptors. These descriptors are 
characteristic to the molecules under multi-descriptor 
environment. A total number of 673 descriptors, 
belonging to 3D-modules, have been computed to obtain 
most appropriate models describing the biological 

activity. Prior to model development procedure, all those 
descriptors that are intercorrelated beyond 0.90 and 
showing a correlation of <0.1 with the biological 
endpoints (descriptor versus activity, r < 0.1) were 
excluded. This procedure has reduced the total descriptors 
from 673 to 158 as relevant ones to explain the biological 
actions of titled compounds. 
 

Development and validation of model 
The combinatorial protocol in multiple linear regression 
(CP-MLR) [35-39] and partial least squares (PLS) [40-
42] procedures were used in the present work for 
developing QSAR models. The CP-MLR is a “filter”-
based variable selection procedure, which employs a 
combinatorial strategy with MLR to result in selected 
subset regressions for the extraction of diverse structure–
activity models, each having unique combination of 
descriptors from the generated dataset of the compounds 
under study. The embedded filters make the variable 
selection process efficient and lead to unique solution. 
Fear of “chance correlations” exists where large 
descriptor pools are used in multilinear QSAR/QSPR 
studies [43, 44]. In view of this, to find out any chance 
correlations associated with the models recognized in CP-
MLR, each cross-validated model has been subjected to 
randomization test [45, 46] by repeated randomization 
(100 simulation runs) of the biological responses. The 
datasets with randomized response vector have been 
reassessed by multiple regression analysis. The resulting 
regression equations, if any, with correlation coefficients 
better than or equal to the one corresponding to 
unscrambled response data were counted. This has been 
used as a measure to express the percent chance 
correlation of the model under scrutiny. Validation of the 
derived model is necessary to test its prediction and 
generalization within the study domain. For each model, 
derived by involving n data points, a number of statistical 
parameters such as r (the multiple correlation coefficient), 
s (the standard deviation), F (the F ratio between the 
variances of calculated and observed activities), and 
Q2

LOO (the cross-validated index from leave-one-out 
procedure) have been obtained to access its overall 
statistical significance. In case of internal validation, 
Q2

LOO is used as a criterion of both robustness and 
predictive ability of the model. A value greater than 0.5 
of Q2 index suggests a statistically significant model. The 
predictive power of derived model is based on test set 
compounds. The model obtained from training set has a 
reliable predictive power if the value of the r2

Test (the 
squared correlation coefficient between the observed and 
predicted values of compounds from test set) is greater 
than 0.5.  
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Table 1. Structural variations and reported DPP-4 and DPP-8 inhibitory activities of triazolopiperazines. 
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Cpd.  R1 R2 R3 
IC50(nM)a 

DPP-4 DPP-8 

1b H  H H 18 48000 
2 (S)-CH3  H  H  23 23000 
3 (R)-CH3  H  H  14 33000 
4 H  (S)-CH3  H  91 >100000c 
5 H  (R)-CH3  H  42 75000 
6b H  H  (S)-CH3  88 >100000c 
7 H  H  (R)-CH3  4.3 17000 
8 di-CH3  H  H  92 66000 
9 H  H  di-CH3  175 6000 
10b CH3  H  CH3  100 >100000c 
11b CH3 H  CH3  209 >100000c 
12 CH3  H  CH3  12 70000 
13 CH3  H  CH3  11 44000 
14 H  H  Et  113 >100000c 
15 H  H  Et  5 8000 
16 H  H  CH2CF3  123 >100000c 
17 H  H  CH2CF3  5.7 1600 
18 H  H  CH2CH=CH2  1.5 3000 
19 H  H  CH2CH=CH2  32 72000 
20 H  H  CH2CON(CH3)2 377 >100000c 
21b H  H  CH2CON(CH3)2  2.8 30000 
22 H  H  CH2Ph  140 >100000c 
23 H  H  CH2Ph  0.66 622 
24 H  H  CH2(4-methoxyphenyl)  320 >100000c 
25 H  H  CH2(4-methoxyphenyl)  0.43 367 
26b H  H  CH2(2-trifluoromethylphenyl)  438 >100000c 
27b H  H  CH2 (2-trifluoromethylphenyl)  0.31 8000 
28b H  H  CH2(2-fluorophenyl)  131 >100000c 
29b H  H  CH2(2-fluorophenyl)  0.46 1103 
30 H  H  CH2(4-fluorophenyl)  116 >100000c 
31 H  H  CH2(4-fluorophenyl)  0.18 332 
32 H  H  CH(OH)(4-fluorophenyl)  430 >100000c 
33 H  H  CH(OH)(4-fluorophenyl)  0.32 326 
34 H  H  CH(OH)(4-fluorophenyl)  90 40000 
35 H  H  CH(OH)(4-fluorophenyl)  0.5 628 
36 H  H  CH2(3,5-bis-trifluoromethylphenyl)  587 >100000c 
37b H  H  CH2 (3,5-bis-trifluoromethylphenyl)  6.3 >100000c 
38 H  H  CH2(2-pyridyl)  132 >100000c 
39 H  H  CH2(2-pyridyl)  0.4 5000 

aConcentration of a compound to bring out 50% inhibition (IC50), taken from reference [32]; bCompound included in test set; 
cCompound with uncertain activity, not part of data set. 
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Additional statistical parameters such as, the Akaike’s 
information criterion, AIC [47, 48], the Kubinyi function, 
FIT [49, 50] and the Friedman’s lack of fit, LOF [51], 
have also been calculated to further validate the derived 
models. The AIC takes into account the statistical 
goodness of fit and the number of parameters that have to 
be estimated to achieve that degree of fit. 
The FIT, closely related to the F-value, proved to be a 
useful parameter for assessing the quality of the models. 
A model which is derived in k independent descriptors, 
its F-value will be more sensitive if k is small while it 
becomes less sensitive if k is large. The FIT, on the other 
hand, will be less sensitive if k is small whereas it 
becomes more sensitive if k is large. The model that 
produces the lowest AIC value and highest FIT value is 
considered potentially the most useful and the best. The 
LOF factor takes into account the number of terms used 
in the equation and is not biased, as are other indicators, 
toward large number of parameters. 
 

Applicability domain 
The usefulness of a model is based on its accurate 
prediction ability for new congeners. A model is valid 
only within its training domain and new compounds must 
be assessed as belonging to the domain before the model 
is applied. The applicability domain (AD) is evaluated by 
the leverage values for each compound [52]. A Williams 
plot (the plot of standardized residuals versus leverage 
values (h)) is constructed, which can be used for a simple 
graphical detection of both the response outliers (Y 
outliers) and structurally influential chemicals (X 
outliers) in the model. In this plot, the AD is established 
inside a squared area within ±x standard deviations and a 
leverage threshold h*, which is generally fixed at 3(k + 
1)/n (n is the number of training set compounds and k is 

the number of model parameters), whereas x = 2 or 3. If 
the compounds have a high leverage value (h > h*), then 
the prediction is not trustworthy. On the other hand, when 
the leverage value of a compound is lower than the 
threshold value, the probability of accordance between 
predicted and observed values is as high as that for the 
training set compounds. 
 
Results and discussion 

 

QSAR results 
In multi-descriptor class environment, exploring for best 
model equation(s) along the descriptor class provides an 
opportunity to unravel the phenomenon under 
investigation. In other words, the concepts embedded in 
the descriptor classes relate the biological actions 
revealed by the compounds. For the purpose of modeling 
study, 10 compounds have been included in the test set 
for the validation of the models derived from 29 training 
set compounds. A total number of 156 significant 
descriptors from 3D-classe have been subjected to CP-
MLR analysis with default “filters” set in it. Statistical 
models in two, three and four descriptor(s) have been 
derived successively to achieve the best relationship 
correlating DPP-4 inhibitory activity. A total number of 
10, 20 and 22 models in two, three and four descriptors, 
respectively, were obtained through CP-MLR. These 
models (with 158 descriptors) were identified in CP-MLR 
by successively incrementing the filter-3 with increasing 
number of descriptors (per equation). For this, the 
optimum r-bar value of the preceding level model has 
been used as the new threshold of filter-3 for the next 
generation. The selected models in two, three and four 
descriptors are given below. 

 
pIC50 = 7.563 – 3.848(0.768)RDF075m + 6.324(1.145)RDF085m   
n = 29, r = 0.765, s = 0.722, F = 18.405, Q2

LOO = 0.499, Q2
L5O = 0.503 

r2
Test = 0.372, FIT = 1.115, LOF = 0.629, AIC = 0.642             (1) 

 
pIC50 = 7.642 – 3.011(0.737)RDF075m + 2.883(0.568)RDF105p  
n = 29, r = 0.740, s = 0.754, F = 15.752, Q2

LOO = 0.469, Q2
L5O = 0.465 

r2
Test = 0.165, FIT = 0.954, LOF = 0.687, AIC = 0.701             (2) 

 
pIC50 = 8.702 – 5.173(0.780)RDF075m + 6.241(0.985)RDF085m – 1.785(0.560)G3e  
n = 29, r = 0.840, s = 0.621, F = 19.979, Q2

LOO = 0.615, Q2
L5O = 0.603 

r2
Test = 0.646, FIT = 1.577, LOF = 0.528, AIC = 0.509             (3) 

 
pIC50 = 10.050 – 2.942(0.734)DISPv + 3.853(0.976)RDF085m – 3.848(0.602)RDF110e  
n = 29, r = 0.833, s = 0.631, F = 19.029, Q2

LOO = 0.588, Q2
L5O = 0.538 

r2
Test = 0.505, FIT = 1.502, LOF = 0.547, AIC = 0.526            (4) 

 
pIC50 = 5.359 –2.502(0.665)RDF075m + 4.134(0.557)RDF085p + 1.904(0.474)Mor10m  
+ 2.268(0.534)RTu+  
n = 29, r = 0.889, s = 0.534, F = 22.626, Q2

LOO = 0.696, Q2
L5O = 0.615 

r2
Test = 0.684, FIT = 2.011, LOF = 0.451, AIC = 0.405            (5) 
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pIC50 = 6.016 –1.956(0.525)RDF110e + 2.590(0.414)RDF105p + 2.139(0.497)Mor10m 
+ 1.442(0.516)RTp+  
n = 29, r = 0.877, s = 0.560, F = 20.083, Q2

LOO = 0.621, Q2
L5O = 0.633 

r2
Test = 0.525, FIT = 1.785, LOF = 0.495, AIC = 0.444            (6) 

 
In above and all follow-up regression equations, the 
values given in the parentheses are the standard errors of 
the regression coefficients. The signs of the regression 
coefficients suggest the direction of influence of 
explanatory variables in the models. In the randomization 
study (100 simulations per model), none of the identified 
models has shown any chance correlation. 
Most of the participated descriptors RDF075m, 
RDF085m, RDF110e, RDF085p and RDF105p in above 
models belong to RDF descriptors class. RDF (Radial 
Distribution Function) descriptors [53] are based on a 
radial distribution function that may be considered as the 
probability distribution of finding an atom in a spherical 
volume of radius (R). The RDF descriptors are 
represented as RDFkw where k is step size and w is 
weighting scheme such as the unweighted case (u), 
atomic mass (m), the van der Waals volume (v), the 
Sanderson atomic electronegativity (e) and the atomic 
polarizability (p). The RDF descriptors not only provide 
information about interatomic distances in the whole 
molecule but bond distances, atom types, ring types and 
planar and non-planar systems also. Atomic masses 
weighted radial distribution function 7.5 (descriptor 
RDF075m) and  atomic Sanderson electronegativities 
weighted radial distribution functions 11.0 (descriptor 
RDF110e) contributed negatively to the activity 
suggesting that a higher values of these radial distribution 
functions would be  detrimental to DPP-4 inhibition 
actions. On the other hand positive contribution of radial 
distribution function-8.5/ weighted by atomic masses 
(descriptor RDF085m) and atomic polarizabilities 
weighted radial distribution functions 8.5 and 10.5 
(RDF085p and RDF105p, respectively) advocated a 
higher value of these to augment the inhibitory activity.  
Descriptor DISPv is representative of geometrical class of 
descriptors. Geometrical descriptors are derived from the 
three-dimensional structure of the molecule and 
calculation of these is based on some optimized 
molecular geometry obtainable by the methods of the 
computational chemistry or on crystallographic 
coordinates. Geometrical descriptors offer more 
information and discrimination power for similar 
molecular structures and molecule conformations because 
a geometrical representation of a molecule involves the 
knowledge of the relative positions of the atoms in 3D 
space. Descriptor DISPv is among the COMMA2 
descriptors [54]. COMMA2 descriptors are given by 
moment expansions for which the zero-order moment of a 
considered property (such as mass (m), van der Waals 
volume (v), Sanderson electronegativity (e) and 

polarizability (p)) field is non-vanishing. The negative 
contribution of descriptor DISPv (the displacement 
between the geometric centre and the centre of the van 
der Waals volume field, calculated with respect to the 
molecular principal axes) hints that a lower value of it 
would be beneficiary to the activity.  
Descriptor Mor10m is a 3D-MoRSE (3D-Molecule 
Representation of Structures based on Electron 
diffraction) descriptor [55]. These descriptors (Morsw) 
represent the scattered electron intensity (signals). The 
term s represents the scattering in various directions by a 
collection of atoms and w is the atomic property or may 
be unweighted case. The positive contribution of 3D-
MoRSE - signal 10/ weighted by atomic masses 
(Mor10m) suggests that a higher value of it would be 
incremental to the activity. Descriptors RTu+ and RTp+ 
are from the GETAWAY (GEometry, Topology, and 
Atom-Weights AssemblY) class of descriptors. 
GETAWAYs [56] are geometrical descriptors which 
encode information on the effective position of 
substituents and fragments in the molecular space. These 
descriptors are independent of molecule alignment and 
account for information on molecular size and shape and 
for specific atomic properties. Both the descriptors RTu+ 
(unweighted R maximal index) and RTp+ (atomic 
polarizabilities weighted R maximal index) shown 
positive correlation to the activity advocating higher 
values of these for augmented activity. The remaining 
descriptor G3e is a Weighted Holistic Invariant Molecular 
(WHIM) descriptor. These descriptors are geometrical 
descriptors and are based on statistical indices calculated 
on the projections of the atoms along principal axes [57]. 
WHIM descriptors are free from prior alignment of 
molecules because these are invariant to translation and 
rotation. WHIM descriptors (categorized as directional 
and global) furnish relevant molecular 3D information 
about molecular size, shape, symmetry, and atom 
distribution with respect to invariant reference frames. 
The appeared WHIM descriptor, G3e (3rd component 
symmetry directional WHIM index/weighted by atomic 
Sanderson electronegativities) correlated negatively to the 
activity suggesting lower value of it for elevated DPP-4 
activity.  
The four descriptor models could estimate nearly 79% in 
observed activity of the compounds. Considering the 
number of observations in the dataset, models with up to 
five descriptors were explored. It has resulted in 4 five-
parameter models with test set r2 > 0.50. These models 
have shared 10 descriptors among them. All these 10 
descriptors along with their brief meaning, average 
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regression coefficients, and total incidence are listed in 
Table 2, which will serve as a measure of their estimate 
across these models. Following are the emerged five-

descriptor models for the DPP-4 inhibitory activity of 
titled compounds. 

 
pIC50 = 7.266 – 1.712(0.685)DISPv – 2.653(0.634)RDF110e + 3.126(0.567)RDF085p 
+ 1.564(0.507)Mor10m + 1.795(0.570)RTu+  
n = 29, r = 0.900, s = 0.518, F = 19.774, Q2

LOO = 0.668, Q2
L5O = 0.680 

r2
Test = 0.606, FIT = 1.830, LOF = 0.496, AIC = 0.409            (7) 

 
pIC50 = 5.240 – 2.398(0.595)RDF110e + 3.094(0.581)RDF085p + 2.392(0.481)Mor10m 
+ 1.436(0.603)Mor12m + 1.740(0.586)RTu+  
n = 29, r = 0.898, s = 0.523, F = 19.296, Q2

LOO = 0.715, Q2
L5O = 0.726 

r2
Test = 0.512, FIT = 1.786, LOF = 0.506, AIC = 0.417            (8) 

 
pIC50 = 6.452 – 2.969(0.510)RDF110e – 2.016(0.719)RDF155e + 2.402(0.505)RDF085p 
+ 2.802(0.501)Mor10m + 1.809(0.580)Mor12m  
n = 29, r = 0.895, s = 0.531, F = 18.573, Q2

LOO = 0.711, Q2
L5O = 0.690 

r2
Test = 0.735, FIT = 1.719, LOF = 0.522, AIC = 0.430                        (9) 

 
pIC50 = 7.507 – 4.112(0.760)RDF075m + 5.814(0.901)RDF085m + 1.151(0.497)Mor10m 
– 1.879(0.485)G3e + 1.303(0.500)RTu+  
n = 29, r = 0.894, s = 0.533, F = 18.437, Q2

LOO = 0.611, Q2
L5O = 0.638 

r2
Test = 0.670, FIT = 1.707, LOF = 0.525, AIC = 0.432          (10) 

 
These models have accounted for nearly 81% variance in 
the observed activities. In the randomization study (100 
simulations per model), none of the identified models has 
shown any chance correlation. The values greater than 0.5 
of Q2 index is in accordance to a reasonable robust QSAR 
model. The pIC50 values of training set compounds 
calculated using Eqs. (7) to (10) and predicted from LOO 
procedure have been included in Table 3. The models (7) 
to (10) are validated with an external test set of 10 
compounds listed in Table 1. The predictions of the test 
set compounds based on external validation are found to 
be satisfactory as reflected in the test set r2 (r2

Test) values 
and the same is reported in Table 3. The plot showing 
goodness of fit between observed and calculated activities 
for the training and test set compounds is given in Figure 
1. 
The newly appeared descriptors in above models are 
RDF155e (a RDF class descriptor) and Mor12m (from 
3D-MoRSE class). The signs of regression coefficients of 
these descriptors suggest that a lower value of descriptor 
RDF155e (radial distribution function – 15.5/weighted by 
atomic Sanderson electronegativities) and a higher value 
of 3D-MoRSE - signal 12/ weighted by atomic masses 
(descriptor Mor12m) would be incremental to the 
activity. In this way the descriptors identified for 
rationalizing the activity give avenues to modulate the 
structure to a desirable biological endpoint. 
A partial least square (PLS) analysis has been carried out 
on these 10 CP-MLR identified descriptors (Table 2) to 

facilitate the development of a “single window” 
structure–activity model. For the purpose of PLS, the 
descriptors have been autoscaled (zero mean and unit SD) 
to give each one of them equal weight in the analysis. In 
the PLS cross-validation, three components are found to 
be the optimum for these 10 descriptors and they 
explained 93.9% variance in the activity (r2 = 0.939, 
Q2

LOO = 0.853, s = 0.391, F = 62.879, r2
Test = 0.763). The 

MLR-like PLS coefficients of these 10 descriptors are 
given in Table 4. For the sake of comparison, the plot 
showing goodness of fit between observed and calculated 
activities (through PLS analysis) for the training and test 
set compounds is also given in Figure 1. Figure 2 shows a 
plot of the fraction contribution of normalized regression 
coefficients of these descriptors to the activity.  
The PLS analysis has suggested RDF110e as the most 
determining descriptor for modeling the activity of the 
compounds (descriptor S. No. 4 in Table 4; Figure 2). The 
other nine significant descriptors in decreasing order of 
significance are Mor10m, RDF075m, RDF085p, 
RDF085m, RTU+, G3e, Mor12m, DISPv and RDF155e. 
All descriptors are part of Eqs. (1) to (10) and convey 
same inference in the PLS model as well. It is also 
observed that PLS model from the dataset devoid of 10 
descriptors (Table 2) is inferior in explaining the activity 
of the analogues. 
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Table 2. Identified descriptorsa along with their physical meaning, average regression coefficient and incidenceb, in 

modeling the DPP-4 inhibitory activity of triazolopiperazines.  

S. 
No. 

Descriptor 
class  

Descriptor  Physical meaning, average regression coefficient (incidence) 

1 
Geometrical 
descriptors 

DISPv 
d COMMA2 value / weighted by atomic van der Waals 
volumes 

-1.712(1) 

2 

RDF 
descriptors 

RDF075m 
Radial distribution function at 7.5 Å / weighted by atomic 
masses 

-4.112(1) 

3 RDF085m 
Radial Distribution Function at 8.5 Å / weighted by atomic 
polarizabilities 
5.814( 1) 

4 RDF110e 
Radial Distribution Function at 11.0 Å / weighted by atomic 
Sanderson electronegativities 

-2.674(3) 

5 RDF155e 
Radial Distribution Function at 15.5 Å / weighted by atomic 
Sanderson electronegativities 

-2.016(1) 

6 RDF085p 
Radial Distribution Function at 8.5 Å / weighted by atomic 
polarizabilities 

2.874(3) 

7 
3D-MoRSE 
descriptors 

Mor10m 
3D-MoRSE - signal 10 / weighted by atomic masses 

1.977(4) 

8 Mor12m 
3D-MoRSE - signal 12 / weighted by atomic masses 

1.622(2) 

9 
WHIM 
descriptors 

G3e 
3rd component symmetry directional WHIM index /weighted 
by atomic Sanderson electronegativities 
-1.879(1) 

10 
GETAWAY 
descriptor 

RTu+ 
R maximal index / unweighted 

1.613(3) 
aThe descriptors are identified from the five parameter models, emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, 
filter-3 as 0.869, and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 29 compounds. bThe average regression coefficient of the descriptor 
corresponding to all models and the total number of its incidence. The arithmetic sign of the coefficient represents the actual sign of 
the regression coefficient in the models. 
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Figure 1. Plot of observed and calculated pIC50 values of training- and test-set compounds for DPP-4. 

 

  
Figure 2. Plot of fraction contribution of MLR-like PLS coefficients (normalized) against ten CP-MLR identified 

descriptors (Table 4) associated with DPP-4 inhibitory activity of triazolopiperazines. 
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Table 3. Observed and modeled DPP-4 inhibitory activities of triazolopiperazines. 

 S.  
No. 

pIC50(M)a 

Obsdb 

 Eq. (7)  Eq. (8)  Eq. (9)  Eq. (10)  PLS 

 Calc Predc  Calc Predc  Calc Predc  Calc Predc  Calc Predc 

1d 7.74  8.48 -d  8.42 -d  8.19 -d  7.59 -d  8.18 -d 

2 7.64  7.37 7.32  7.60 7.60  7.65 7.65  7.54 7.53  7.50 7.49 

3 7.85  8.21 8.29  8.05 8.08  7.96 7.98  7.76 7.75  8.08 8.11 

4 7.04  6.96 6.94  6.67 6.52  6.87 6.79  7.27 7.28  6.68 6.64 

5 7.38  7.32 7.31  7.65 7.68  7.38 7.38  7.73 7.76  7.43 7.44 

6d 7.06  7.65 -d  7.63 -d  6.82 -d  7.74 -d  7.39 -d 

7 8.37  8.03 7.98  8.03 7.97  7.99 7.94  8.69 8.75  8.33 8.33 

8 7.04  7.11 7.15  6.86 6.73  6.97 6.93  7.47 7.70  7.04 7.04 

9 6.76  7.02 7.17  6.89 6.95  7.19 7.31  6.61 6.54  6.86 6.87 

10d 7.00  6.64 -d  7.12 -d  7.24 -d  7.42 -d  6.99 -d 

11d 6.68  7.00 -d  6.89 -d  6.97 -d  7.39 -d  6.97 -d 

12 7.92  7.74 7.72  7.55 7.50  7.60 7.56  7.69 7.67  7.65 7.62 

13 7.96  7.90 7.89  7.77 7.75  7.68 7.65  8.00 8.01  7.89 7.87 

14 6.95  7.18 7.20  7.53 7.57  7.70 7.75  7.81 7.87  7.59 7.63 

15 8.30  7.97 7.94  7.90 7.87  8.08 8.06  7.64 7.60  7.83 7.80 

16 6.91  6.92 6.93  6.83 6.81  6.44 6.36  6.89 6.89  6.74 6.72 

17 8.24  8.32 8.33  8.16 8.15  8.42 8.44  7.63 7.36  7.92 7.86 

18 8.82  8.52 8.42  8.42 8.27  7.82 7.74  8.70 8.66  8.42 8.39 

19 7.49  8.27 8.36  8.43 8.56  8.37 8.49  8.12 8.21  8.38 8.45 

20 6.42  7.24 7.71  7.88 8.03  7.44 7.68  6.70 6.77  6.89 6.94 

21d 8.55  7.67 -d  7.59 -d  7.60 -d  7.45 -d  7.40 -d 

22 6.85  7.03 7.06  6.77 6.76  6.64 6.61  6.55 6.50  6.70 6.68 

23 9.18  9.60 9.72  9.24 9.26  9.28 9.32  9.33 9.37  9.48 9.54 

24 6.49  6.67 6.74  6.75 6.85  6.36 6.27  6.07 5.91  6.39 6.35 

25 9.37  9.48 9.54  8.94 8.81  8.93 8.80  8.98 8.87  9.29 9.24 

26d 6.36  7.83 -d  8.07 -d  6.61 -d  6.86 -d  7.06 -d 

27d 9.51  9.43 -d  9.17 -d  8.74 -d  9.13 -d  8.94 -d 

28d 6.88  7.51 -d  7.60 -d  7.76 -d  6.60 -d  7.26 -d 

29d 9.34  9.40 -d  9.49 -d  9.17 -d  8.98 -d  9.44 -d 

30 6.94  5.96 5.68  6.63 6.44  6.96 6.98  6.15 5.96  6.53 6.48 

31 9.74  8.31 8.02  8.56 8.19  9.19 9.04  9.00 8.70  9.07 8.97 

32 6.37  6.52 6.54  6.51 6.53  7.14 7.28  6.84 6.96  6.73 6.82 

33 9.49  9.57 9.62  9.91 10.11  10.09 10.35  9.34 9.30  9.73 9.81 

34 7.05  7.43 7.50  7.16 7.17  7.53 7.58  7.80 7.95  7.69 7.72 

35 9.30  8.68 8.24  9.24 9.20  8.98 8.71  8.75 8.36  8.89 8.78 

36 6.23  6.85 7.24  6.38 6.66  6.27 6.33  7.30 8.24  6.49 6.60 

37d 8.20  8.19 -d  7.79 -d  7.71 -d  9.07 -d  8.08 -d 

38 6.88  6.80 6.79  6.78 6.76  6.65 6.61  6.65 6.61  6.75 6.74 

39 9.40  9.40 9.40  9.29 9.27  8.80 8.64  9.34 9.32  9.41 9.41 
aOn molar basis; bTaken from ref. [32]; cLeave-one-out (LOO) procedure; dCompound included in test set. 
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Table 4. PLS and MLR-like PLS models from the descriptors of five parameter CP-MLR models for DPP-4 inhibitory 

activity.   

A: PLS equation 

PLS components PLS coefficient (s.e.)a 
Component-1 -0.859(0.064) 
Component-2 0.091(0.036) 
Component-3 0.182(0.069) 
Constant 7.737 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient (f.c.)b Order  
1 DISPv -0.159(-0.057) 9 
2 RDF075m -0.339(-0.122) 3 
3 RDF085m 0.314(0.113) 5 
4 RDF110e -0.449(-0.162) 1 
5 RDF155e -0.092(-0.033) 10 
6 RDF085p 0.333(0.120) 4 
7 Mor10m 0.361(0.130) 2 
8 Mor12m 0.220(0.079) 8 
9 G3e -0.226(-0.081) 7 
10 RTu+ 0.272(0.098) 6 

Constant  7.196 

C: PLS regression statistics Values 

n 29 
r 0.939 
s 0.391 
F 62.879 
FIT 4.964 
LOF 0.210 
AIC 0.202 
Q2

LOO 0.853 
Q2

L5O 0.858 
r2

Test 0.763 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of descriptors for their 
original values; f.c. is fraction contribution of regression coefficient, computed from the normalized regression coefficients obtained 
from the autoscaled (zero mean and unit s.d.) data. 
 

The other inhibitory activity reported for DPP-8 enzyme 
system has also analyzed quantitatively. A total number 
of 10 models in two parameters and 46 models in three 
parameters, having r2

Test > 0.5, were obtained on applying 

CP-MLR. For the sake of brevity, highly significant four 
models in three parameters emerged through CP-MLR are 
shown below. 

 
pIC50 = 3.193 + 2.361(0.305)RDF085m – 2.142(0.718)RDF150p + 1.732(0.582)Mor10p  
n = 19, r = 0.915, s = 0.390, F = 25.793, Q2

LOO = 0.741, Q2
L5O = 0.738 

r2
Test = 0.523, FIT = 2.763, LOF = 0.257, AIC = 0.234          (11) 

 
pIC50 = 3.847 + 2.302(0.325)RDF085m – 1.778(0.726)RDF150p + 1.237(0.479)Mor10m  
n = 19, r = 0.906, s = 0.409, F = 23.001, Q2

LOO = 0.747, Q2
L5O = 0.724 

r2
Test = 0.697, FIT = 2.464, LOF = 0.283, AIC = 0.257          (12) 

 
pIC50 = 7.192 + 2.588(0.594)RDF115m – 5.919(1.176)Mor23m – 1.685(0.728)E3e  
n = 19, r = 0.905, s = 0.411, F = 22.788, Q2

LOO = 0.709, Q2
L5O = 0.756 

r2
Test = 0.577, FIT = 2.441, LOF = 0.285, AIC = 0.259          (13) 

 
pIC50 = 9.741 – 1.025(0.450)RDF145p – 8.388(1.092)Mor23m – 1.702(0.442)H5m  
n = 19, r = 0.900, s = 0.422, F = 21.355, Q2

LOO = 0.703, Q2
L5O = 0.719 

r2
Test = 0.574, FIT = 2.288, LOF = 0.300, AIC = 0.273                    (14) 
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These models are able to explain nearly 84% variance in 
the observed DPP-8 inhibitory activities. None of the 
identified models has shown any chance correlation in the 
randomization study (100 simulations per model). The 
values greater than 0.5 of Q2 index is in accordance to a 
reasonable internal validation and r2

Test values reflect 
upon the good predictive power of above mentioned 
QSAR models. The pIC50 values of training and test set 
compounds calculated using Eqs. (11) to (14) and 
predicted from LOO procedure have been included in 
Table 5. The goodness of fit or agreement between 
observed and calculated activities for the training and test 
set compounds is shown in Figure 3. 
It is evident from the models that higher values of atomic 
mass weighted radial distribution functions 8.5 and 11.5 
(descriptors RDF085m and RDF115m, respectively), and 
lower values of atomic polarizability weighted radial 

distribution functions 14.5 and 15.0 (descriptors 
RDF145p and RDF150p, respectively) would supplement 
the activity. Atomic mass weighted 3D-MoRSE signals 
10 and 23 (descriptors Mor10m and Mor23m, 
respectively) in addition to atomic polarizability weighted 
10 (descriptor Mor10p) have shown prevalence to explain 
the DPP-8 inhibitory activity. A higher value of 
descriptors Mor10p and Mor10m is conducive to activity   
whereas a higher value of descriptor Mor23m is 
unfavorable to the activity. The negative correlation of 
WHIM descriptor (E3e, 3rd component accessibility 
WHIM index/ weighted by atomic Sanderson 
electronegativities) and physicochemical properties 
weighted spatial autocorreation GETAWAY descriptor 
(H5m, H autocorrelation of lag 5/weighted by atomic 
masses) recommended a lower value of these descriptors 
for elevated DPP-8 inhibitory activity. 

 

 
 

 
Figure 3. Plot of observed and calculated pIC50 values of training- and test-set compounds for DPP-8. 
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Table 5. Observed and modeled DPP-8 inhibitory activities of triazolopiperazines. 

S.  
No. 

pIC50(M)a 

Obsdb 

 Eq. (11)  Eq. (12)  Eq. (13)  Eq. (14) 

 Calc Predc  Calc Predc  Calc Predc  Calc Predc 

1d 4.32  4.51 -d  4.35 -d  4.25 -d  4.96 -d 

2 4.64  4.55 4.53  4.21 4.10  4.67 4.68  4.74 4.75 

3 4.48  4.01 3.91  4.13 4.07  4.41 4.39  4.31 4.27 

4e -e  -e -e  -e -e  -e -e  -e -e 

5 4.12  4.49 4.60  4.32 4.38  4.30 4.34  4.18 4.21 

6e -e  -e -e  -e -e  -e -e  -e -e 

7 4.77  4.96 4.99  4.96 4.99  4.81 4.81  5.08 5.18 

8 4.18  4.55 4.62  4.74 4.80  4.17 4.17  4.22 4.23 

9 5.22  4.75 4.50  4.54 4.33  4.81 4.62  5.58 5.61 

10e -e  -e -e  -e -e  -e -e  -e -e 

11e -e  -e -e  -e -e  -e -e  -e -e 

12 4.15  4.24 4.26  4.33 4.35  4.37 4.40  4.30 4.33 

13 4.36  4.78 4.81  4.87 4.90  4.63 4.65  4.42 4.43 

14e -e  -e -e  -e -e  -e -e  -e -e 

15 5.1  4.79 4.76  4.85 4.82  4.56 4.49  4.94 4.91 

16e -e  -e -e  -e -e  -e -e  -e -e 

17 5.8  5.52 5.48  5.75 5.74  5.71 5.69  5.27 5.05 

18 5.52  4.99 4.89  5.07 5.00  5.05 4.94  4.85 4.76 

19 4.14  4.94 5.02  4.98 5.07  4.73 4.97  4.29 4.33 

20e -e  -e -e  -e -e  -e -e  -e -e 

21d 4.52  4.38 -d  4.88 -d  4.19 -d  4.89 -d 

22 -e  -e -e  -e -e  -e -e  -e -e 

23 6.21  6.11 6.09  6.04 6.00  5.58 5.51  6.18 6.17 

24 -e  -e -e  -e -e  -e -e  -e -e 

25 6.44  6.49 6.51  6.52 6.54  6.72 6.85  6.56 6.60 

26e -e  -e -e  -e -e  -e -e  -e -e 

27d 5.1  5.08 -d  5.66 -d  5.89 -d  5.42 -d 

28e -e  -e -e  -e -e  -e -e  -e -e 

29d 5.96  5.08 -d  5.67 -d  5.98 -d  6.28 -d 

30e -e  -e -e  -e -e  -e -e  -e -e 

31 6.48  6.42 6.40  6.35 6.30  6.53 6.55  6.51 6.52 

32e -e  -e -e  -e -e  -e -e  -e -e 

33 6.49  6.76 6.92  6.43 6.42  6.53 6.56  6.08 5.80 

34 4.4  4.63 4.72  4.57 4.66  5.29 5.55  5.52 5.74 

35 6.2  5.95 5.88  6.19 6.18  5.96 5.89  5.86 5.80 

36e -e  -e -e  -e -e  -e -e  -e -e 

37e -e  -e -e  -e -e  -e -e  -e -e 

38e -e  -e -e  -e -e  -e -e  -e -e 

39 5.3  5.07 4.76  5.16 4.96  5.16 5.13  5.10 5.00 

 

Applicability domain (AD) 
On analyzing the model AD in the Williams plot (Figure 
4) of the model based on the whole dataset (Table 6), it 
has appeared that none of the compounds were identified 
as an obvious outlier for the DPP-4 inhibitory activity if 
the limit of normal values for the Y outliers (response 
outliers) was set as 3 (standard deviation) units. None of 

the compounds was found to have leverage (h) values 
greater than the threshold leverages (h*). For both the 
training set and test set, the suggested model matches the 
high-quality parameters with good fitting power and the 
capability of assessing external data. Furthermore, almost 
all of the compounds was within the AD of the proposed 
model and were evaluated correctly. 



Brij Kishore Sharma et al., JIPBS, Vol 7 (3): 39-53, 2020 

51 

   

   
Figure 4. Williams plot for the training-set and test- set compounds for DPP-4 inhibitory activity. The horizontal dotted 

line refers to the residual limit (±3×standard deviation) and the vertical dotted line represents threshold leverage h* (= 

0.46). 

 

Table 6. Models derived for the whole data set (n = 39) for the DPP-4 inhibitory activity in descriptors identified 

through CP-MLR. 

Model r s F q2
LOO Eq. 

pIC50 = 7.197 – 1.490(0.627)DISPv  
– 2.823(0.602)RDF110e + 3.198(0.527)RDF085p  
+ 1.505(0.497)Mor10m + 1.662(0.587)RTu+   

0.875 0.559 21.562 0.669 (7a) 

pIC50 = 5.414 – 2.495(0.586)RDF110e  
+ 3.383(0.537)RDF085p + 2.209(0.474)Mor10m  
+ 0.864(0.530)Mor12m + 1.788(0.608)RTu+   

0.863 0.582 19.383 0.657 (8a) 

pIC50 = 6.582 – 3.073(0.427)RDF110e  
– 2.047(0.468)RDF155e + 2.772(0.419)RDF085p  
+ 2.889(0.448)Mor10m + 1.321(0.459)Mor12m  

0.892 0.520 25.914 0.728 (9a) 

pIC50 = 7.778 – 4.456(0.682)RDF075m  
+ 5.559(0.715)RDF085m + 1.223(0.463)Mor10m  
– 2.183(0.455)G3e + 1.251(0.485)RTu+  

0.880 0.547 22.780 0.665 (10a) 
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Conclusions 
The DPP-4 and DPP-8 inhibitory activity of 
triazolopiperazines have been quantitatively analyzed in 
terms of 3D-Dragon descriptors. The derived QSAR 
models have shown that atomic properties played pivotal 
role in terms of weighted radial distribution functions, 
3D-MoRSE signals, component symmetry directional 
WHIM index and moment expansions. The CP-MLR 
indentified RDF, 3D-MoRSE, WHIM and GETAWAY 
descriptors weighted or unweighted with atomic 
properties endow relevant molecular 3D information 
about molecular size, shape, symmetry, atom distribution, 
effective position of substituents and fragments in the 
molecular space hold promise for rationalizing the DPP-4 
and DPP-8 inhibitory actions of triazolopiperazines. The 
values of statistical parameters, Q2

LOO and r2
Test ensure 

that the models have validated internally and externally, 
both and the predictions are reliable and acceptable. PLS 
analysis has further confirmed the dominance of the 

CP‐MLR identified descriptors. Applicability domain 
analysis revealed that the suggested models have 
acceptable predictability. All the compounds are within 
the applicability domain of the proposed models and were 
evaluated correctly. 
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