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Abstract 
 
Superoxide dismutase (SOD) is a metalloenzyme that represents the initial defense line versus 
oxidative stress as it dismutates the superoxide ions to hydrogen peroxide and molecular 
oxygen. SODs have broad medical applications in clinical nutrition, cosmetics and 
pharmaceuticals. Here, two superoxide dismutases designated camel plasma superoxide 
dismutase 1 (CPSOD1) and camel plasma superoxide dismutase 2 (CPSOD2) were purified 
from camel plasma using ammonium sulfate fractionation and chromatography on anion 
exchanger and gel filtration columns. CPSOD1 had a native molecular weight of about 240 kDa, 
whereas two bands with molecular weights of 65 kDa and 55 kDa were found on SDS–PAGE 
suggesting it to be heterotetramer. CPSOD2 exhibited monomeric structure with molecular 
weight of 60 kDa. The pI values are evaluated at pH 6.9 and pH 6.2 for the two SODs. CoCl2, 
CuCl2, MgCl2, NiCl2 and ZnCl2 activated CPSOD1 and CPSOD2 while CaCl2, FeCl2 and 
MnCl2 inhibited them. The activity of both isoenzymes is inhibited with KCN and H2O2. 
CPSOD1 and CPSOD2 are proposed to be copper/zinc containing isoenzymes. 
 

Introduction 
 

Free radicals are a set of highly active chemical 
molecules with one or more unpaired electrons and can 
cause oxidative modifications for biomolecules. The most 
serious free radicals are the oxygen derivatives 
recognized as reactive oxygen species (ROS). The 
antioxidant defense systems save cells from poisonous 
influences of ROS and all organisms maintain 
equilibrium between their own free radicals and 
antioxidants. When this equilibrium break, a state called 
oxidative stress arises that the antioxidants cannot dispose 
of free radicals and causes too much increase in ROS that 
harms biological systems [1-3]. ROS may cause lipid 
peroxidation, membrane fluidity disruption, apoptosis 
initiation in the mitochondria, amino acid modifications, 
peptide chains fragmentation, enzymes inactivation, DNA 
deletions, mutations, base degeneration, single-strand 
breaking and cross-linking of proteins [4-6]. ROS can 
undergo neutralization process by the antioxidant defense 
system either by enzymatic or non-enzymatic molecules. 
The enzymatic antioxidant system comprises enzymes as 
superoxide dismutase, catalase and glutathione 
peroxidase [7, 8]. 
Superoxide dismutase (SOD) is broadly propagated 
metalloenzyme that protects against oxidative stress from 
superoxide radicals [9-11]. SODs stimulate the 
transformation of superoxide ions to O2 and H2O2 to keep 

tissues from poisonous oxidants yielded through 
oxidative operations [12, 13]. Thereafter, catalase is 
securely breaks down the hydrogen peroxide into H2O 
and O2 [14]. SODs are existed in almost whole organisms 
which consume oxygen [10, 15]. The SODs are 
categorized into four kinds on the basis of the metal ions 
existing in the active site [16]. Copper-zinc SOD 
(CuZnSOD), manganese SOD (MnSOD), iron SOD 
(FeSOD) and nickel SOD (NiSOD) [13, 17, 18]. The four 
kinds can be found in prokaryotes, while in eukaryotes 
FeSOD is found in chloroplasts, MnSOD is found in 
mitochondria and peroxisomes, and CuZnSOD is exist in 
chloroplasts, cytosol and extracellular spaces [15, 19, 20, 
21]. It was demonstrated that SOD activity is dispensable 
for normal animal life-span and needed to survive acute 
stresses [22]. SOD had wide commercial uses in clinical 
nutrition, cosmetics and pharmaceuticals [23]. SOD was 
used as candidate antioxidant drug in different diseases 
and augmentation of antioxidant defenses [24]. SOD has 
been administered as therapeutic agent in 
hypoxic/ischemic cerebral injury, ischemic reperfusion 
and cerebral edema [13. 25]. SOD derivative drugs are 
efficient in controlling hypertension [26], reducing 
hypoxic-ischemic brain damage [27, 28] and treating 
endothelial cell dysfunction [29] and are likely useful 
antitumor drug targets [30]. Therefore, the aim of this 
study is purification and characterization of SOD from 
the camel plasma for its wide therapeutic applications. 
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Materials and methods 

 

Preparation of camel plasma 
The camel plasma was obtained by centrifugation of 
mixture of 900 ml of camel blood and 100 ml of 0.11 M 
trisodium citrate solution at 2700 x g for 15 min at 4°C. If 
the plasma was not used immediately, it was dispended 
into eppendorf tubes and stored at -40°C [31]. 

 
Chemicals 
Phenylmethylsulfonylfluoride (PMSF), xanthine sodium 
salt, xanthine oxidase enzyme, diethylaminoethyl 
cellulose (DEAE-cellulose), Nitroblue tetrazolium 
chloride (NBT), Phenazine methosulfate (PMS), 
isoelectric focusing (IEF) standard markers mixture pI 3.6 
- 9.3, molecular weight marker kits for gel filtration and 
Sephacryl S-300 were purchased from Sigma Chemical 
Co. All other chemicals were of analytical grade. 

 
Assay of superoxide dismutase activity 
The SOD activity assay reaction mixture contained in a 
total volume of 1.0 ml of 0.05 M potassium phosphate 
buffer pH 7.8, containing 0.01 mM cytochrome C, 0.1 
mM EDTA and 0.05 mM sodium xanthine. The reaction 
was started by adding 21 mU xanthine oxidase enzyme. 
One unit of SOD activity is defined as the amount of 
enzyme giving 50% inhibition on cytochrome C reduction 
at 550 nm [32]. 

 
Staining of SOD activity 
Detection of SOD activity is usually achieved by a system 
containing nitroblue tetrazolium salt (NBT) and 
phenazine methosulfate (PMS) that generate superoxide 
anions when reoxidized in daylight. The superoxide 
anions in turn, reduce NBT to an insoluble formazan. 
Achromatic zones indicate where the deficiency of 
superoxide radicals, due to the SOD activity, prevented 
the reduction of NBT. After electrophoresis, the gel was 
submerged in 50 ml 0.1 M Tris-HCl pH 8.6, containing 
20 mg NBT and traces of PMS. Gels are then exposed for 
several minutes to daylight until achromatic zones appear 
on a blue background, indicating the presence of SOD 
activity [33]. 

 
Purification of camel plasma superoxide dismutases 

Ammonium sulfate precipitation 
The camel plasma was brought to 80% saturation by 
gradually adding solid (NH4)2SO4 and stirred for 30 min 
at 4°C. The pellet was obtained by centrifugation at 
12000 x g for 30 min and dissolved in 0.02 M potassium 
phosphate buffer pH 7.4 and dialyzed extensively against 
the same buffer. 

 
 

 

DEAE-cellulose column chromatography 
The dialyzed sample was chromatographed on DEAE-
cellulose column (12 x 2.4 cm i.d.) previously 
equilibrated with 0.02 M potassium phosphate buffer pH 
7.4. The adsorbed proteins were eluted with a stepwise 
NaCl gradient ranging from 0 to 1 M prepared in the 
equilibration buffer at a flow rate of 60 ml/hour. 5 ml 
fractions were collected and the fractions containing SOD 
activity were pooled and concentrated by lyophilization. 
 
Sephacryl S-300 column chromatography 
The concentrated solution containing the SOD activity 
was applied onto Sephacryl S-300 column (142 cm x 1.75 
cm i.d.). The column was equilibrated and developed with 
0.02 M potassium phosphate buffer pH 7.4 at a flow rate 
of 30 ml/hour and 2 ml fractions were collected. 

 
Electrophoretic analysis 
Native gel electrophoresis was carried out with 7% PAGE 
[34]. SDS-PAGE was performed with 12% 
polyacrylamide gel [35]. The subunit molecular weights 
of the purified SOD isoenzymes were determined by 
SDS-PAGE [36]. Electrofocusing was performed and the 
isoelectric point (pI) values were calculated from a 
calibration curve [37, 38]. The proteins were stained with 
0.25% Coomassie Brilliant Blue R-250. 

 
Protein determination 
Protein was determined by the dye binding assay method 
using BSA as a standard protein [39]. 

 
Results 

 

Purification of SOD isoenzymes from camel plasma 
A purification scheme of camel plasma SODs is given in 
table (1). The ammonium sulfate fraction elution profile 
on DEAE-cellulose column (Figure 1a) manipulated two 
major SOD activity peaks which designated CPSOD1 
eluted with 0.0 M NaCl and CPSOD2 eluted with 0.1 M 
NaCl. The fractions comprising SOD activity of each 
peak were collected, lyophilized and loaded through 
Sephacryl S-300 column that revealed one SOD activity 
peak for CPSOD1 and CPSOD2 (Figure 1b and 1c). The 
CPSOD1 specific activity is 75.9 units / mg protein 
representing 27.7% recovery, while CPSOD2 specific 
activity is 17.5 units / mg protein representing 17.5% 
recovery (Table 1). 

 
Molecular weight determination and 

Electrophoretic analysis of CPSODs  
The intact molecular weights of CPSOD1 and CPSOD2 
obtained from Sephacryl S-300 column are concluded 
from a standardization curve as 240 ± 2.4 kDa and 60 ± 
1.6 kDa. Electrophoretic analysis of samples from the 
various purification phases; camel plasma, (NH4)2SO4 
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fraction, DEAE-cellulose fraction and Sephacryl S-300 
fraction of CPSOD1 and CPSOD2 on 7 % native PAGE 
was carried out (Figure 2). Odd protein bands met the 
SOD isoenzymes bands affirming purity of the two 
molecules. Native and denatured purified CPSOD1 and 
CPSOD2 isoforms were analyzed electrophoretically on 
SDS-PAGE in comparison with standard proteins (Figure 
3a and 3b). The subunit molecular weights were deduced 
from a standardization curve as 65 and 55 kDa for 
CPSOD1 and 60 kDa for CPSOD2. The purified 
CPSOD1 and CPSOD2 isoenzymes were analyzed on 
isoelectrofocusing PAGE (Figure 3c) and the isoelectric 
points (pI) were deduced from a standard curve. The two 

isoforms displayed single molecular species with pI 
values of 6.9 for CPSOD1 and 6.2 for CPSOD2. 

 

Effect of divalent cations and various inhibitors 
The purified camel plasma CPSOD1 and CPSOD2 were 
preincubated with various divalent cations and different 
inhibitors for 5 min at 37˚C. The inhibition % was 
calculated as a ratio of a control lacking the cation or the 
inhibitor. CoCl2, CuCl2, MgCl2, NiCl2 and ZnCl2 
increased the activity of CPSOD1 and CPSOD2 while 
CaCl2, FeCl2 and MnCl2 inhibited them (Table 2). KCN, 
H2O2, SDS and PMSF inhibited the activity of CPSOD1 
and CPSOD2 isoenzymes (Table 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a         b  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
c 
 

Figure 1. (a) A typical elution profile for the camel plasma ammonium sulfate fraction on DEAE-cellulose column (12 

cm x 2.4 cm i.d.) previously equilibrated with 0.02 M K-phosphate buffer pH 7.4. (b) Typical elution profile for the 

chromatography of the concentrated pooled DEAE-cellulose fractions CPSOD1 on Sephacryl S-300 column (142 cm x 

1.75 cm i.d.) previously equilibrated with 0.02 M K-phosphate buffer pH 7.4. (c) Typical elution profile for the 

chromatography of the concentrated pooled DEAE-cellulose fractions CPSOD2 on Sephacryl S-300 column (142 cm x 

1.75 cm i.d.) previously equilibrated with 0.02 M K-phosphate buffer pH 7.4. 

 
 
 

 

a b 

c 
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Table 1. A typical purification scheme of SOD isoenzymes from camel plasma. 

Purification step Total mg 

proteins  

Total 

units 

Recovery 

(%) 

Specific 

activity 

Fold 

purification 

      Camel plasma 525 534 100.0 2.9 1.0 

80% (NH4)2SO4 fraction 360 266 82.5 3.5 1.2 

DEAE-cellulose fractions 

0.0 M NaCl (CPSOD1) 28.6 90 38.5 20.6 7.1 

0.1 M NaCl (CLSOD2) 16.4 85 31.6 29.5 10.2 

Sephacryl S-300 fractions 

CPSOD1 5.6 25 27.7 75.9 26.2 

CPSOD2 3.8 69 17.5 70.8 24.4 

      
 

Table 2. Effect of divalent cations on the purified camel plasma CPSOD1 and CPSOD2. 

Reagent Concentration 

(mM) 

Residual activity (%) 

 CPSOD1 CPSOD2 

Control ----- 100.0 100.0 

     
CaCl2 

2.0 85.2 81.4 

5.0 71.6 57.2 

 
CoCl2 

2.0 108.4 112.5 

5.0 122.3 128.8 

    
 
CuCl2 

2.0 112.2 123.5 

5.0 136.7 140.6 

 
FeCl2 

2.0 93.5 90.8 

5.0 72.9 76.2 

 
MgCl2 

2.0 110.0 121.1 

5.0 126.7 145.4 

 
MnCl2 

2.0 55.8 46.3 

5.0 33.2 26.6 

    
 
NiCl2 

2.0 112.6 109.4 

5.0 126.3 114.9 

    
 
ZnCl2 

2.0 136.2 133.8 

5.0 148.5 152.3 

* These values represent % of the control and the means of triplicate experiments. 
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Table 3. Effect of inhibitors on the purified camel plasma CPSOD1 and CPSOD2. 

Reagent Concentration 

(mM) 

Inhibition (%) 

CPSOD1 CPSOD2 

    Control ----- 0.0 0.0 

Potassium cyanide 
(KCN) 

2.0 66.2 59.7 

5.0 83.4 86.1 

Hydrogen peroxide 
(H2O2) 

2.0 32.8 35.9 

5.0 50.0 54.8 

Sodium Azide 
(NaN3) 

2.0 7.1 4.4 

5.0 16.2 12.9 

Sodium dodecyl sulphate (SDS) 2.0 27.1 24.3 

5.0 48.5 43.6 

Ethylenediamine tetra acetic acid 
(EDTA) 

2.0 2.1 3.7 

5.0 5.6 10.4 

DL-Dithiothreitol  
(DTT) 

2.0 16.9 29.3 

5.0 26.5 36.8 

β-Mercaptoethanol 2.0 13.3 6.9 

5.0 21.8 14.4 

Phenylmethylsulfonyl 
fluoride (PMSF) 

2.0 42.7 49.0 

5.0 55.4 66.1 

Iodoacetamide 2.0 8.3 11.6 

5.0 14.8 28.2 

* These values represent % of the control and the means of triplicate experiments.  
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Figure 2. Electrophoretic analysis of protein and SOD isoenzyme patterns on 7% native PAGE. (a) CPSOD1 protein 

pattern, (b) CPSOD1 isoenzyme pattern, (c) CPSOD2 protein pattern and (d) CPSOD2 isoenzyme pattern: (1) Camel 

plasma, (2) Ammonium sulfate fraction, (3) DEAE-cellulose fraction and (4) Sephacryl S-300 fraction. 
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Figure 3. (a) Subunit molecular weight determination of CPSOD1 on 12 % SDS-PAGE: (1) Low molecular weight 

marker proteins, (2) denatured purified CPSOD1, (3) Native purified CPSOD1 and (4) High molecular weight marker 

proteins. (b) Subunit molecular weight determination of CPSOD2 on 12 % SDS-PAGE: (1) molecular weight marker 

proteins and (2) denatured purified CPSOD2. (c) Isoelectrofocusing PAGE: (1) CPSOD1, (2) Isoelectric point (pI) 

marker proteins and (3) CPSOD2. 

 

Discussion 

 
Superoxide dismutases are important enzymes with 
different industrial and medical applications. SOD was 
used as a drug in cerebral and hypertension diseases, 
treating inflammation and preventing the alcohol induced 
hangover. It proliferated in industry of cosmetics and 
supplementary products utilized in skin protection. SOD 
is also utilized as a preservative of transplanted organs, 
sperms, food stuffs and laundry ingredients [11, 22, 40, 
41]. This study outlines an easy purification method for 
SOD isoenzymes from the camel plasma. The separation 
technique was achieved by ammonium sulfate deposition, 
anion exchange chromatography on DEAE-cellulose 
matrix and gel-filtration chromatography on Sephacryl S-
300 resins. Comparable purification processes of SODs 
were stated like tea clone SOD [42], Leishmania infantum 
SOD [43], shrimp muscle tissue SOD [10], hens eggs 
SOD [44] and mangrove tree SOD [45]. In this study, the 
DEAE-cellulose chromatographical separation analyzed 
the SOD activity into two isoenzymes named CPSOD1 
and CPSOD2. The Sephacryl S-300 resin analyzed each 
isoform as a single SOD activity peak and deduced their 
molecular weights as 240 ± 2.4 kDa for CPSOD1 and 60 
± 1.6 kDa for CPSOD2 (Fig. 1). The total yield of the two 
isoenzymes after size exclusion is 45.2% recovery. 

CPSOD1 and CPSOD2 were purified 26.2 and 24.4 folds 
over the crude plasma (Table 1). A big diversity of 
purification folds and recovery percentages for SOD were 
stated; from Leishmania peruviana 103.7folds and 70% 
yield, from Leishmania amazonensis 101.6 folds and 86% 
yield [46], from tea clone 51 folds with 3.77% yield [42], 
from yeast 28.5 folds and 53% yield [47] and from black 
soybean 15.4 folds and 29.4% yield [48]. 
The two camel plasma SOD isoenzymes showed the 
appearance of one protein band that matched the SOD 
activity band affirmed the purity of CPSOD1 and 
CPSOD2 preparations (Figure 2). Comparing the subunit 
molecular weights of CPSOD1 and CPSOD2 with their 
native intact protein masses obtained from the gel-
filtration columns revealed that CPSOD1 is 
heterotetramer protein consisted of four polypeptides 
while CPSOD2 is monomer protein (Fig. 3). Various 
SODs were stated with different molecular weights like; 
28 kDa garlic SOD [49], 31 kDa black soybean SOD 
[48], 33 kDa hens eggs SOD [44], 31 kDa mangrove tree 
SOD [45], 34.8 kDa pumpkin pulp SOD [50], 66.1 kDa 
oriental river prawn SOD [51] and 40 kDa, 67 kDa and 
90 kDa camel tick larvae SODs [52]. High molecular 
weights tetrameric SODs were stated in bacteria ranging 
from 110 to 140 kDa [53] 125 kDa yeast SOD [54] and 
169 kDa tea leaves SOD [42]. The purified camel plasma 
CPSOD1 and CPSOD2 isoenzymes have isoelectric point 

a b c 
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(pI) values of 6.9 and 6.2 (Fig. 3b). Analogous pI values 
were stated as bacteria SOD isoenzymes pI values of 5.9, 
6.15, 6.35, 6.6 and 7.5 [54], fish SODs isoenzymes pIs of 
5.9, 6.0 and 6.2 [55], black soybean SOD pI of 5.6 [48] 
and camel tick larvae SODs pIs of 8, 7.2 and 6.6 [52].  
CoCl2, CuCl2, MgCl2, NiCl2 and ZnCl2 increased the 
activity of both preparations CPSOD1 and CPSOD2 
while CaCl2, FeCl2 and MnCl2 decreased it (Table 2) 
affirming the involvement of Cu+2 and Zn+2 for CPSOD1 
and CPSOD2 action. ZnCl2 is involved for SOD of 
bacteria [56] and shrimp muscle tissue [10]. Recognition 
of various SODs types is depending on the characteristic 
inhibition by certain chemical compounds. The SODs 
classes can be specified by their sensitivity to potassium 
cyanide and hydrogen peroxide inhibition [9, 10, 48]. 
Also, existence of Cu+2 and Zn+2 in the SOD active site 
was affirmed by KCN and H2O2 inhibition [54]. It was 
stated that, CuZnSOD isoenzymes are sensitive to both 
KCN and H2O2 [58-60]. Here, KCN and H2O2 inhibited 
the activity of CPSOD1 and CPSOD2 potently (Table 3) 
affirming that both preparations are powerfully proposed 
to be copper-zinc SOD isoenzymes. Various SOD types 
were purified; Cu/Zn-SOD from eggs hens [44], 
Kluyveromyces marxianus yeast [47], black soybean 
[48], pumpkin [50], haemolymph of oriental river prawn 
[51], camel tick larvae [52], Japanese flounder [55] and 
bay scallop [12]. Mn-SOD was purified from tea leaves 
[42], muscle tissue of the shrimp [10] and camel tick 
larvae [52]. Also, Fe-SOD was purified from Leishmania 
peruviana and Leishmania amazonensis [43]. β-
Mercaptoethanol and dithiothreitol inhibited both 
CPSOD1 and CPSOD2 isoenzymes activity affirming 
involvement of thiol groups in their structure and action 
as in case of Radix lethospermi seed SOD [61]. PMSF 
inhibited both isoenzymes activity suggesting the 
presence of serine residue in both isoenzymes active sites. 
In conclusion, this is the first study reporting SOD from 
camel plasma. It provides an appropriate purification 
method for two Cu/Zn-SODs that could be fundamental 
for averting oxidative stress. These SOD isoenzymes may 
be used as important agents in cosmetics and 
supplementary products industry and as candidate drugs 
for treating of various diseases. 
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