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Abstract 

Drug discovery for chemotherapeutic agent is making an extraordinary progress in the realm of 
advancing novel oncogenic protein kinase inhibitor lead compounds of varying chemical 
structure and biological mechanism. In the last 40 years, the first protein kinase, pp60src(Src), 
was discovered as a prototype of the new current superfamily of Ser/Thr, Tyr and dual-
specificity protein kinases. In this review, we will highlight Src kinase inhibitors with respect to 
the structural biology, drug design, chemical diversity, and biological properties. This will help 
medicinal chemist to the design of more potent Src kinase inhibitors for resistive target protein 
in cancer.  

Introduction 
 
One of the most important respects for cancer drug 
discovery is the identification of key therapeutic targets 
for approaches focused on the ultimate objective to 
advance effective and safe- acting drugs. For this reasons, 
oncogenic protein kinase has been approved as promising 
therapeutic targets. There are many  functional roles for  
protein kinase such as  cell motility,  growth, survival, 
differentiation, cell -cell interactions, and /or cell-matrix 
interaction have provided a basis for mechanism based 
approaches  to  create small – molecule inhibitors . On the 
past decade, an important progress has been established 
of protein kinase inhibitors and a new chemical entities 
have been approved by varying chemical and biological 
scope [1-20]. It is important to note that a few novel small 
molecules have enabled periclinal proof of concept 
studies as well as providing significant clinical candidate 
for cancer therapy [21-25]. 
From 300 cancer genes about 10% are protein kinases. 
On the last 25 years, they had identified the non-receptor 
tyrosine kinase, pp60src (Src) [26], the protein kinase 
complement of human genome sequence has been 
identified [27]. There are many cancers have been linked 
to somatic mutation of protein kinases, from which both 
receptor and non-receptor tyrosine kinase have been 
appeared as an important therapeutic target for cancer 
drug discovery. 
Oncongenic of protein kinases in human are usually 
resulted from the fusion of the products from genomic 
rearrangement (e.g. chromosomal translocations, 
mutations, deletions), and over expression resulting from 
gene expression [10]. Such transformations typically 
resulted to enhance kinase activity, which then altered the 

downstream signal transduction. There are many cellular 
biology studies have been characterized  a number of 
protein kinases in term of signal transduction pathways 
and in vivo phenotypes as related to cancer or other 
diseases (e.g., Src gene Gene knockout (KO) and  
osteopetrosis).  
 

Src kinase inhibitor: Structural biology and drug 

design 
Src kinase has catalytic and non-catalytic regulatory 
domains (i.e the SH3 and SH2 domains) which are 
functionally significant in signal transduction processes. 
The molecular basis of Src activation has been further 
elucidate by structural biology studies, including X-ray 
structures of full length Src (i.e. SH3-SH2-tyrosine 
kinase) [28–30]. These studies have shown that Src 
present in an assembled conformation, in active 
conformation by virtue of its SH3 and SH2 domains 
(Figure 1). The inactive conformation are formed by 
intramolecular binding of the SH2 with the C-terminal 
tail through phosphorylation of Tyr 527 as well as  the 
intramolecular binding of the SH3 domain and a linker 
sequence between the SH2 domain and the N-terminal 
lobe of the tyrosine kinase. The defective intramolecular 
SH3 and SH2 interaction is considered to be involved in 
Src activation, with in the inactive conformation by 
intermolecular interaction with SH3, and/or SH2 cognate 
proteins, and followed by phosphorylation at Tyr-416 
(kinase domain) and dephosphorylation at Tyr-527. 
There are several X-ray structure  of the Src kinase have 
been determined with respect to a number of small 
molecules complexes. For example AP23451, and 
AP23464 [31], CPG77675, and purvalanol [32], and a 
des-methyl analog of STI-571 (imatinib) [33].  
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Figure 1. X-ray structure of Src SH3-SH2-tyrosine 
kinase pdb: 2SRC [111]. 

 
Finally, several studies had been performed to exploit 
protein engineering to mutate the ATP- binding pockets 
of protein kinase and enhance the selectivity for synthetic 
ATP inhibitors [66-68] using Src tyrosine kinase as 
prototype model .  In summary, mutation of the conserved 
amino acid in the ATP binding pocket was created to 
made a new site that will increase the ability to 

accommodate synthetic ATP substrate analogue, [γ-32P]-
N6- (benzyl )-ATP. This provided a set of enzyme-
substrate to identify signal transduction pathways with 
respect to the identification of cellular substrate under 
deferent experimental conditions. 
 

Src kinase inhibitor: Chemical diversity and 

biological properties 
Several approaches had been used  to  design of Src 
kinase inhibitors [7, 24, 33-40 ] such as peptides, ATP 
template-related mimetic, substrate analogs, natural 
products, and unique small molecule resulted from 
biological screening of cooperate chemical collections, 
and /or combinatorial libraries, similar compounds from 
structure based denovo drug-design and virtual screening. 
The first and second generation of Src Tyrosine kinase 
inhibitors are usually worked through ATP competitive 
binding ligands for example, BMS-354825, bosutinib, 
AZM-475271, AZD-0530, SKI-606, PD180970, 
PD173955, PD166326, PP1, PP2, CGP-76030, CGP-
77675, SU-6656, AP23464, AP23848 AP23846, 
AP23994, AP23451, and AP23588. 
Nowadays, BMS-354825, AZD-0530, and SKI-606 are in 
clinical trials for Src tyrosine kinase -dependent cancers.  

 

BMS-354825 (Pyrimidinylaminothiazole template-

based inhibitor) (Dasatinib, Sprycel™) 
Dasatinib (BMS-354825 is Src tyrosine kinase inhibitors 
with nanomolecular rang activity (IC50=0.5 nM, Bcr-AbI 

kinase (IC50<1 nM), and KIT  (IC50 < 1 nM), and it is 

also showed high activity against both PDGFR-β (IC50 = 
28 nM) and EGFR (IC50 = 180 nM). Also it has been 
tested in vivo and in vitro against Src dependent cancer 
[41-46] . BMS-354825 bind with high affinity to the ATP 
binding pocket, the benzamide fragment binding to the 
hydrophobic specific pocket. BMS-354825 has been 
approved by FDA as a drug of choice for the treatment 
for CML. In addition Dasatinib (BMS-354825 has shown 
a highly potent activity against Src in prostatic cancer in 
terms of kinase activity, downstream signaling via FAK 
and Crk associated substrate (p130CAS), and related 
cellular functions (including cell adhesion, migration, and 
invasion).  In 2017, Appel et al. had showed that dasatinib 
involved in delaying pain-related behaviour and 
conserves bone in a rat model of cancer-induced bone 
pain [47]. 

 

Pyridopyrimidinone template-based inhibitors 

(PD180970, PD173955 and PD166326)  
Pyridopyrimidinone template-based inhibitors have been 
determined to be highly active against Src and AbI kinase 
with different selectivities against Platelet-derived growth 
factor receptor (PDGFR), Fibroblast growth factor 
receptor (FGFR), EGFR, and Kit kinases [48-58]. 
PD173955 had shown anticancer activity against both 
MDA-MB-468 breast cancer cell lines and also it has 
shown antimiotic activity against Src and Yea kinases, 
which have roles in cellular progression through the 
initial phase of mitosis in vitro studies had shown that 
PD173955 had high potent anticancer activity  against 
Abl (IC50 = 2.2 nM) in CML. PD166326 has shown 
antileukemic activity through inhibition of Bcr-Abl 
tyrosine kinase inhibitors and several Bcr-AbI mutant in 
both invitro and in vivo studies . PD166326 was shown to 
prolong the survival of mice with imatinib -resistant 
CML. The problem with PD173955 is their limited 
solubility in aqueous environments which makes them 
less desirable for medical applications.PD180970 has 
shown anticancer activity by blocking Stat5 signaling and 
induces the apoptosis in Bcr-AbI cell line. Adding to that, 
PD180970 had shown high antiproliferative activity 
against several mutant BCR-AbI except T315I.  
Finally, NJ-26854165 inhibits the proliferation and 
triggers cell death in a p53-independent manner in 
various BCR/ABL-expressing cells, which include 
primary leukemic cells from patients with CML blast 
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crisis and cells expressing the Imatinib-resistant T315I 
BCR/ABL mutant. The response to JNJ-26854165 is 
associated with the down regulation of BCR/ABL 
dependently of proteosome activation. Moreover, 
combining JNJ-26854165 and tyrosine kinase inhibitor 
(TKI) Imatinib or PD180970 leads to a synergistic effect. 
[59]. 
 

 
Pyrazolopyrimidine template-based inhibitors [PP1 

and PP2] 
PP1, and it is chemically analogues PP2 have been 
determined to be highly activity against ZAP-70, JAK2, 
EGF-R, and PKA kinases[60-69]. PP1 has been approved 
to be Src inhibitors and its roles in VEGF-mediated 
angiogenesis and vascular permeability, Src- driven 
human breast cancer cell lines with respect to both 
heregulin-dependent or independent growth, Src-related, 
collagen type-I-induced E-cadherin down-regulation and 
consequent effects on both metastatic and proliferation 
properties. PP1 and PP2 have been showed to be effective 
against kinase stem cell factor (SCF) receptor c-Kit. In 
addition, PP1 has shown to inhibit the mutant 
constitutively active forms of c-kit kinase (D814V and 
D814Y) that are known to be presented in mast cell 
disorders. 

Finally, PP3 was identified as a negative control for the 
Src family protein tyrosine kinase inhibitor PP2 [70], and 

inhibit the EGFR kinase activity (IC50=2.7μM) [71,72]. 
 

 
Pyrrolopyrimidine template-based inhibitors (CGP-

76030 and CGP-76775) 
Pyrrolopyrimidine template-based inhibitors (CGP-76030 
and CGP-76775)  [73–76] were first described as potent 
and selective inhibitors of Src tyrosine kinase in both in 
vivo and in vitro study in comparative to animal models 
of osteoporosis, and subsequently in cancer cell lines (e.g 
leukemia and pancreatic). Recently, CGP76030 has been 
founded to overcome the imatinib resistance [77]. 
CGP-76775 inhibited osteoclasts, and reduce the growth, 
adhesion, motility, and invasion in PC3 prostatic cancer. 
Furthermore, CGP-76775 has determined to inhibit the 
Bcr-AbI tyrosine kinase, and several imatinib-resistant 
Bcr-Abl mutants (except for T315I). Bcr-AbI blocked the 
propagation in invito and increased the survival of Bcr-
Abl-driven B-cell acute lymphoblastic leukemia mice. 
 

 
 

Indolinone template-based inhibitor (SU-6656) 
Indolinone template-based inhibitor (SU-6656) is an 
effective inhibitor of Src kinase, and it is also a potent 
inhibitor of PDGF-stimulated DNA synthesis and Myc 
induction in a fibroblast cell line [78-81]. SU-6656 has 
also been used to estimate the role of Src and Ras-ERK 
signal transduction in Src-transformed cells with respect 
to Rac1, similar implicating Vav2, and Tiam1 as 
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downstream effectors of Src to modulate Rac1-dependent 
pathways.  In endothelial cells, SU-6656 is an effective in 
increasing radiation-induced apoptosis and vascular 
endothelium destruction, co-administration of SU-6656 
before fractionated irradiation have increased the 
radiation induced destruction of blood vessels within the 
cancer cell as well as delay it is growth. Recently, 
(SU6656) had been shown to reduce EGFR 
phosphorylation and downstream signaling which 
resulted in the inhibition of the OVA-induced 
inflammatory cell influx in broncho alveolar lavage fluid 
(BALF), perivascular and peribronchial inflammation, 
fibrosis, goblet cell hyper/metaplasia and airway hyper-
responsiveness [82]. 
 

 
Purine template-based inhibitors (AP23464, 

AP23848, AP23846, AP23994, AP23451, and 

AP23588) 
Purine template-based inhibitors (AP23464, AP23848, 
AP23846, AP23994, AP23451, and AP23588) [7, 24, 34, 
37-39, 83–90] are highly potent anticancer activity with 
IC50 range from 1-10 nM. AP23464 has been used to 
examine the functional relationship of Src and FAK in 
adhesion turnover combined with the migration of colon 
cancer cells, providing proof of concept and correlating 
Src tyrosine kinase as a key therapeutic target. 
Specifically, Src kinase dependent phosphorylation of 
FAK in colon cancer cells was determined to associate 
cell migration with cell matrix adhesion turnover. 
AP23846 has been used to estimate the ovarian cancer 
cell  by comparing the  cancer growth with Src-dependent 
inhibition to enhance the cytotoxicity  of docetaxel in 
both chemoresisitant and chemosenstive ovarian cancer 
cell lines. Recently, AP23846 had been to reduces 
vascular endothelial growth factor and interleukin-8 
expression in human solid tumor cell lines and abrogates 
downstream angiogenic processes [96]. 
AP23994 is an analogue of AP23846, it was effective to 
decline the tumor burden in ovarian cancer models 
(SKOV3ip1 and HeyA8 MDR), compared to the controls 
one. The in vivo studies observed that the combination 
therapy with docetaxel has synergistically declined the 
tumor growth and tumor production of vascular 
endothelial growth factor and interleukin, and affected 
antiangiogenic production by declining the micro vessel 
density, vascular permeability. Another study has shown 

that AP23846 has declined cellular metastasis in 
pancreatic adenocarcinoma cells and angiogenesis for 
implanted tumor cells. AP23451 is a potent Src kinase 
inhibitor [IC50=8nM). It is a novel bone-targeted, 
significantly reduce the osteoclast activity by declining 
the osteoclast formation and osteoclast-dependent bone 

resorption in both in vivo and invitro study (0.1–1 μM). 
AP23451 is a dose-dependent interfere with bone 
resorption hypercalcemia and ovariectomy – induced 
bone loss. The administration of AP23451 to mice 
injected with MDA-231 breast cancer cells effectively 
inhibit the metastasis and induced osteolysis like the 
bisphosphonate zoledronic (Zometa™). In addition, it is 
significantly decline the tumor mass inside the bone 
marrow cavities in contrast to zoledronic acid. AP23588 
is a potent a bone targeted Src kinase inhibitor which has 
been founded to act as anti-resorptive and anabolic 
properties in vitro with respect to declining osteoclast 
activity and stimulating osteoblast activity, respectively.  

 

Quinoline template-based inhibitor SKI-606 

(Bosutinib) 
SK-606 [91-95] has been determined to be effective Src 
kinase inhibitor (IC50= 1.1 nM), and AbI kinase inhibitor 
(IC50= 1nM).  In addition, this compound has selectivity 
inhibit Src over non-Src family kinase and inhibit Src-
dependent cell proliferation (IC50 = 100 nM). SKI-606 is 
an orally active drug in s.c. colon tumor xenograft 
models, declined Src autophosphorylation (Tyr418) in 
HT29 and Colo205 tumors. SKI-606 was shown to inhibit 
Colo205, HCT116, and DLD1 tumor growth upon twice a 
daily administration, and inhibit HT29 tumor growth 
upon once daily administration so that SKI-606 is the 
drug of choice for the treatment of colorectal cancer.  
SKI-606 is in phase II clinical trails. Recently, SKI-606 
(bosutinib) has been founded to suppresses migration and 
invasion of human breast cancer cells [96]. 
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Quinazoline template-based inhibitors AZM475271 

(M475271) and AZD0530 
Quinazoline template-based inhibitors AZM475271 and 
AZD0530 [97-102] are potent Src tyrosine kinase 
inhibitors and have been used to inhibit the tumor growth 
in Src transformed 3T3 tumor xenograft mice at doses 6 
mg/kg po once daily. In in vivo study, AZM475271 has 
provided to be used as Src kinase inhibitor for pancreatic 
cancer invasion and metastasis. The combination therapy 
between AZM475271 with gemcitabine has shown to 
highly potent anticancer and antimetastic activity. In 
studies involving lung adenocarcinoma cells, 
AZM475271 has been shown to decline growth, 
metastasis, and VEGF-mediated neovascularization 
resulting on inhibition the subcutaneous growth and lung 
metastasis. AZD0530 [101, 102] is a highly potent, 
selective of Src kinase inhibitor with good 
pharmacokinetic properties (orally active). It is inhibiting 
the tumor growth in Src-transformed 3T3-fibroblast 
xenograft models. AZD0530 is in phase II clinical trials 
[103]. SKI-1 is apotent, selective Src kinase inhibitor 
(IC50 values = 44 nM). It is ATP-competitive. Interacts 
with both ATP and peptide-binding sites. Additionally, its 
inhibits VEGFR2 (IC50= 0.32 µM), Induces apoptosis 
[105]. 

 
 

Other template-based inhibitors 
The are other examples of small molecules that are Src 
kinase inhibitors [36, 106–110], such as 
phenylaminopyrimidines which bind to the inactive 
conformation of Src kinase but this compounds are 

suffered from low activity (IC50 =∼ 1 μM). Natural 
products inhibitors of Src kinase, staurosporine, 
herbimycin A  and halistanol trisulfate provide a novel 
template relative to chemical diversity of Src inhibitors, 
despite of their potencies are relatively low compared to 
many ATP-mimetics, which generally have Src kinase 
activity (IC50  range from 1-10 nM range). It is worth to 
mention that, Herbimycin A  has been found to act  as 
anti-resorptive  activities in rodent osteoclast and bone 
resorption models  in both in vivo and invitro studies.  
The combinatorial library-based Src kinase inhibitor is a 
potent (IC50 = 64 nM), and 75-fold selective for Src 
kinase over both Fyn and Lyn kinases, and > 1000-fold 
selective over Lack kinase). Finally, the peptide substrate 
based inhibitors illustrates the use of combinatorial 
chemistry combined with drug design focused on the 
incorporation of both conformational and topographical 

constraints to attain relative potency with IC50∼ 100 nM 
range and moderate SFK-selective Src kinase inhibitors. 
KX-01 is the first clinical Src inhibitor of the novel 
peptidomimetic class that targets the peptide substrate site 
of Src providing more specificity toward Src kinase. 
Combinational index analysis revealed that combinations 
of KX-01 with Tamoxifen [TAM] resulted in synergistic 
growth inhibition of breast cancer cell lines. KX-01 

combined with TAM resulted in decreased ERα 
phosphorylation at Src-regulated phosphorylation sites 
serines 118 and 167 that were associated with reduced 

ERα transcriptional activity. Orally administered KX-01 
resulted in a dose dependent growth inhibition of MCF-7 
tumor xenografts, and in combination with TAM 
exhibited synergistic growth inhibition [112]. 
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Conclusion  
 
Following the discovery of Src kinase from 40 years ago, 
there had been an especial progress in advancing 
biochemical, cellular, biochemical and in vivo studies of 
Src kinase toward understanding its roles in both 
pathophysiology and physiology states, including cancer 
and bone disease .Src kinase has been approved to be 
involved in cellular propagation, survival , and migration. 
Such activities provide an opportunity to gives 
approaches for drug development, especially for cancer 
therapy. Noteworthy, there are many Src kinase inhibitors 
in clinical trails such as BMS-354825 (Dasatinib, 
Sprycel™) approved by FDA, AZD-0530, and SKI-606. 
From a chemistry perspective, the opportunity for 
structure-based drug design to further create novel small-
molecule inhibitors of Src kinase has been enabled by 
recent X-ray crystal structures of many novel ligands. 
Hopefully, the good works of so many scientists from 
both past and recent efforts will continue to advance Src 
kinase inhibitors as part of a molecular armamentarium of 
chemical and biological medicines for the war against 
disease. 
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