## Research article

## Validation of stability indicating high performance liquid chromatographic method for simultaneous determination of assay of Linagliptin and Metformin drugs in the pharmaceuticals tablet formulations using bupropion as a common internal standard

## Shaikh Javed Shaikh Afzal<sup>1\*</sup>, Mohamad Asif<sup>2</sup>, Pathan Mohd Arif Ali Khan<sup>2</sup>

<sup>1</sup>Faculty of Science, Pacific Academy of Higher Education and Research University, Udaipur-313003, India. <sup>2</sup>Maulana Azad College of Arts, Science and Commerce, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad – 431001, India.

Key words: Linagliptin, Metformin Hydrochloride, Bupropion Hydrochloride, High Performance Liquid Chromatographic, Force degradation studies, Assay.

\*Corresponding Author: Shaikh Javed Shaikh Afzal, Faculty of Science, Pacific Academy of Higher Education and Research University, Udaipur-313003.

#### Abstract

Linagliptin is a DPP-4 inhibitor developed by Boehringer Ingelheim and used for the treatment of type II diabetes. Metformin is a biguanide antihyperglycemic agent used for treating noninsulin-dependent diabetes mellitus (NIDDM). Validation of stability indicating Simple, Specific, Precise, Accurate, Linear, Rugged, Robust High Performance Liquid Chromatographic method of analysis for simultaneous determination of assay of Linagliptin and Metformin drugs in the pharmaceuticals Tablet formulations using Bupropion as a common internal standard was performed. The assay was accomplished using a mixture of Ammonium phosphate buffer (pH 3.00), and methanol in the volume ratio of 40:60 v/v as mobile phase on an Inertsil ODS2, 150 mm x 4.6mm, 5µ as chromatographic column at a flow rate 0.800 mLmin-land with a uv detector at a wavelength 233nm. The temperature of auto injector and column oven was 10°C and 30°Creceptively. The Injection volume of HPLC system kept as 30µL.linearity of the analytical method was evoluted at concentration range of 0.5123  $\mu$ g/ml to 11.2299  $\mu$ g/ml for Linagliptin and 159.6713 µg/ml to 3500.0690 µg/ml for Metformin respectively with Correlation coefficient (r) value more than 0.999. The LOD and LOQ was 0.1036µg/mL and 0.3140 µg/mL for Linagliptin and 46.4871µg/mL and 140.8700µg/mL for Metformin respectively. The retention time found to be 3.35 min for Linagliptin, 7.80min for Metformin and 3.00 min for Internal standard. Specificity, Method Precision, System Precision, Ruggedness, Robustness, Recovery, Stability of analytical solution, Filter paper selection study, Stress testing (Force Degradation) at various conditions were performed as per the ICH (Q2) recommendations. All the results were found within acceptance criteria.

## Introduction

Linagliptin is a DPP-4 inhibitor developed by Boehringer Ingelheim and used for the treatment of type II diabetes. Linagliptin is a more potent inhibitor of DPP-4 than other drugs that belong to the same class Linagliptin is a competitive and reversible dipeptidyl peptidase (DPP)-4 enzyme inhibitor that slows the breakdown of insulinotropic hormone glucagon-like peptide (GLP)-1 for better glycemic control in diabetes patients. GLP and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that increase the production and release of insulin from pancreatic beta cells and decrease the release of glucagon from pancreatic alpha cells. This results in a overall decrease in glucose production in the liver and increase an of insulin in a glucose-dependent manner. The chemical name is (R)-8-(3-Aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methylquinazolin-2ylmethyl)-3,7-dihydro-purine-2,6-dione. The molecular formula for Linagliptin is C25H28N8O2. The molecular weight of Linagliptin is 472.55. Linagliptin is light yellowish-white to yellow-white and slightly hygroscopic solid substance. Linagliptin is soluble in methanol (ca. 60 mg/mL), sparingly soluble in ethanol (ca. 10 mg/mL), very slightly soluble in isopropanol (<1 mg/mL), and very slightly soluble in acetone. The pKa of Linagliptin is 8.6 [1-7].



Figure 1. Chemical structure of Linagliptin.



Metformin is a biguanide antihyperglycemic agent used for treating non-insulin-dependent diabetes mellitus (NIDDM). It improves glycemic control by decreasing glucose hepatic production, decreasing glucose absorption and increasing insulin-mediated glucose uptake. Metformin may induce weight loss and is the drug of choice for obese NIDDM patients. Use of metformin is associated with modest weight loss. When used alone, metformin does not cause hypoglycemia; however, it may potentiate the hypoglycemic effects of sulfonylureas and insulin. Its main side effects are dyspepsia, nausea and diarrhea. Dose titration and/or use of smaller divided doses may decrease side effects. Metformin should be avoided in those with severely compromised renal function (creatinine clearance < 30ml/min), acute/decompensated heart failure, severe liver disease and for 48 hours after the use of iodinated contrast dyes due to the risk of lactic acidosis. Lower doses should be used in the elderly and those with decreased renal function. Metformin decreases fasting plasma glucose, postprandial blood glucose and glycosolated hemoglobin (HbA1c) levels, which are reflective of the last 8-10 weeks of glucose control. Metformin may also have a positive effect on lipid levels. In 2012, a combination tablet of linagliptin plus metformin hydrochloride was marketed under the name Jentadueto for use in patients when treatment with both linagliptin and metformin is appropriate.

The chemical name is 3-(diaminomethylidene)-1,1dimethylguanidine hydrochloride. The molecular formula is C<sub>4</sub>H<sub>11</sub>N<sub>5</sub>.HCl The molecular weight of Metformin Hydrochloride is 165.63.The molecular weight of Metformin is 129.17. Metformin Hydrochloride is white to off-white powder and soluble in organic solvents such as methanol and is practically insoluble in acetone, ether and chloroform. The pKa of Metformin is 12.4 [1-7].



# Figure 2. Chemical structure of Metformin Hydrochloride.

Bupropion Hydrochloride an antidepressant of the aminoketone class, is chemically unrelated to tricyclic, tetracyclic, selective serotonin re-uptake inhibitor, or other known antidepressant agents. The chemical name is  $(\pm)$ -1-(3-chlorophenyl)-2-[(1,1-dimethylethyl)amino]-1-propanone hydrochloride. The molecular formula is C<sub>13</sub>H<sub>18</sub>ClNOHCl The molecular weight of Bupropion Hydrochloride is 276.20 and that of free Bupropion is 239.74.Bupropion is white to powder and has a pKa of

8.22. Bupropion is very slightly soluble in water and soluble in organic solvents such as methanol [1-7].



Figure 3. Chemical structure of Bupropion Hydrochloride.

While Reviewing Literature for analytical method of analysis it was observed that many methods have been reported for determination of linagliptin and metformin in combination and individually [5-23] but none of the reported HPLC methods have not been validated using internal standard to compensate any processing related and method related variability. Most of the published method is not performed stability-indicating studies (Acid, Alkali, Peroxide, Thermal, Photolytic, Humidity degradation) which is mandatory as per the ICH (Q2) recommendations.

The main objective of the work is to develop and validate stability indicating HPLC method of analysis which is Simple, Specific, Precise, Accurate, Linear, Rugged, Robust etc. for simultaneous determination of assay of Linagliptin and Metformin drugs in the pharmaceutical Tablet formulations using Bupropion as an common internal standard.

## Experimental

## Material and methods Instrumentation

Shimadzu Prominence HPLC system equipped with dual pump, SIL-HTc auto-sampler with cooler, column oven, variable wavelength UV detector and a data acquisition system (Lab Solution Software) were used for the simultaneous determination of assay of Linagliptin and Metformin drugs in the pharmaceutical Tablet formulations using Bupropion as a common internal standard.

## **Reagents and Materials**

The reagents used during analysis include Methanol [HPLC Grade], Water [Milli-Q /HPLC Grade], Ammonium phosphate (AR Grade), Phosphoric acid (GR Grade), Linagliptin (Batch No.LNG/A-499/025, Valid up to: May 2017), Metformin Hydrochloride (Batch No. MD00690113, Valid up to: 09 July 2017) and Bupropion Hydrochloride (Control No. 2-ED-0920812, Valid up to: 27 July 2017) were used obtained as a gift samples from Wockhardt and Lupin Pharmaceutical limited. Fixed dose combination tablets containing 2.5 mg Linagliptin and 1000 mg Metformin Hydrochloride of Lupin Ltd.(Batch

No.606917, Mfg. Date: Sept 2016, Exp. Date: Feb 2018) was purchased from Local medical, Aurangabad (Maharashtra).Ammonium phosphate Buffer, Rinsing solution, Mobile Phase was prepared by dissolving required volume and quantity of reagents and chemicals.

## Analytical solutions

Stock solutions having concentrations approximately, 102.1829  $\mu$ g/mL of Linagliptin in methanol, 7692.4594  $\mu$ g/mL of Metformin in methanol and 1666.7305  $\mu$ g/mL of Bupropion in methanol were prepared and solutions were filtered through 0.45 $\mu$ m nylon membrane filterwith discarding first 2 mL of the filtrate before use. The solution of bupropion was used as internal standard dilution solution during various experiments performed in an analytical method validation and assay calculations of pharmaceutical formulation.

Standard solutions having concentrations approximately, 3.75 µg/ml of Linagliptin, 1500.00 µg/mL of Metformin and 50.000µg/mL of Bupropion were prepared in mobile phase and use as a reference solution for related activities and system suitability. Filter the solution through 0.45µm nylon membrane filter with discarding first 2 mL of the filtrate before use.

Sample solution having concentrations  $3.75 \ \mu g/ml$  of Linagliptin,  $1500.00 \ \mu g/mL$  of Metformin and  $50.000 \ \mu g/mL$  of Bupropion was prepared in mobile phase by dissolving a quantity of powder equivalent to Strength of 2.5 mg of Linagliptin and 1000 mg Metformin and use as a sample solution for related activities. Filter the solution through  $0.45 \mu m$  nylon membrane filter with discarding first 2 mL of the filtrate before use.

## **Results and Discussion**

## Method development

Primarily, numerous trials for optimization of method was performed using different mobile phases composition, different ratios of organic to buffer ,different organic solvents, different buffer with different pH, different stationary phases, different internal standards and variable chromatographic settings in an effort to achieve the finest peak resolution and separation between Linagliptin, Metformin and internal standard as depicted in Figure 4.

A summarized chromatographic condition was as follows:

Mobile phase: Methanol and Ammonium phosphate in water (60:40v/v),

Rinsing Solution: Methanol: Mill-Q water (60:60v/v)Chromatographic Column: Inertsil ODS2, 150 mm x4.6mm,  $5\mu$ Wavelength:233 nmColumn Oven Temperature:30 °CSample cooler Temperature:10 °CFlow rate:0.800 ml per minute

| Injection Volume:        | 30 µl            |
|--------------------------|------------------|
| Run Time:                | 10 minute        |
| Retention Time (minute): | Linagliptin-5.35 |
|                          | Metformin-7.80   |
|                          | Bupropion-3.00   |

## Analytical method validation

The Analytical method was optimized and validated in accordance with the current ICH guidelines and recommendations by means of a vision to accomplish Simple, Specific, Precise, Accurate, Linear, Rugged, Robust method [8-30].

## Specificity

For the evaluation of specificity; Blank solution, placebo solutions, sample solution, standard solution in triplicate were injected into HPLC system No. interference was observed from blank solution and placebo at the retention time of chromatographic peak of Linagliptin, Metformin and internal standard. Peak purity was passes (purity angle was less than purity threshold) for Linagliptin and Metformin and % assay difference with respect to method precision was found 0.10% for Linagliptin and 0.30% for Metformin.

The typical chromatograms of various samples under optimized HPLC conditions was depicted in Figure 4.



Figure 4. Typical chromatograms of Blank solution, Placebo solution, Sample solution & standard Solution

## System Precision

Six replicates injections of standard solution was injected in to the HPLC system and the chromatograms and area ratio of Linagliptin to the Bupropion and Metformin to the Bupropion are recorded. % RSD for area ratio of Linagliptin to the Bupropion and Metformin to the Bupropion of six replicate injections of standard solution was found 0.79% and 0.15% respectively implies that system is precise as tabulated in table no.1.

| ruble i itesuit of system precision | Table 1 | Result | of system | precision |
|-------------------------------------|---------|--------|-----------|-----------|
|-------------------------------------|---------|--------|-----------|-----------|

| Injection No.      | Area ratio<br>(Linagliptinto | Area ratio<br>(Metformin to |
|--------------------|------------------------------|-----------------------------|
|                    | Bupropion)                   | Bupropion)                  |
| 1                  | 0.3113                       | 2.8039                      |
| 2                  | 0.3111                       | 2.8027                      |
| 3                  | 0.3107                       | 2.7939                      |
| 4                  | 0.3123                       | 2.8024                      |
| 5                  | 0.3120                       | 2.8013                      |
| 6                  | 0.3126                       | 2.8059                      |
| Mean               | 0.31167                      | 2.80168                     |
| Standard Deviation | 0.000745                     | 0.004122                    |
| % R.S.D.           | 0.24                         | 0.15                        |

## Method Precision

For the evaluation of Method precision of the analytical method, six samples from homogenous mixture of single batch were prepared as per the test procedure of methodology and analyzed on HPLC system .%RSD for % assay of Linagliptin and Metformin of six samples found was 0.16% and 0.15% as tabulated in Table no.2

| Table 2. Result of method precision |             |            |  |  |  |  |
|-------------------------------------|-------------|------------|--|--|--|--|
| Samula No                           | % Assay of  | % Assay of |  |  |  |  |
| Sample No.                          | Linagliptin | Metformin  |  |  |  |  |
| 1                                   | 99.1        | 99.7       |  |  |  |  |
| 2                                   | 99.3        | 99.4       |  |  |  |  |
| 3                                   | 99.5        | 99.5       |  |  |  |  |
| 4                                   | 99.1        | 99.6       |  |  |  |  |
| 5                                   | 99.2        | 99.8       |  |  |  |  |
| 6                                   | 99.4        | 99.7       |  |  |  |  |
| Mean                                | 99.3        | 99.6       |  |  |  |  |
| Standard Deviation                  | 0.16        | 0.15       |  |  |  |  |
| % R.S.D.                            | 0.16        | 0.15       |  |  |  |  |

## Method Ruggedness

The ruggedness was evaluated through analysis of six samples from a homogenous mixture of single batch by different analyst by using different column, different system and different day. % RSD for % assay of ruggedness found was 0.10 % for Linagliptin and 0.32 % for Metformin and Overall % RSD found was 0.14 % for Linagliptin and 0.29 % for Metformin as tabulated in Table no. 3

## Accuracy (Recovery)

Accuracy of the analytical method was evaluated at a known concentration of Linagliptin and Metformin at about 50%, 100% and 150% of test concentration of sample solution and 50% (1X Blend) and 150% (3x Blend) was calculated. % accuracy at individual level and overall average of % Recovery at all level for both Linagliptin and Metformin was found 99% to 100% as tabulated in table no. 4

|                    | Linaglintin Metformin     |                           |                      |                         |  |  |  |  |  |  |
|--------------------|---------------------------|---------------------------|----------------------|-------------------------|--|--|--|--|--|--|
| Sr. No.            | % Assay of<br>Linagliptin | % Assay of<br>Linagliptin | % Assay of Metformin | % Assay of<br>Metformin |  |  |  |  |  |  |
|                    | Method precision          | Ruggedness                | Method precision     | Ruggedness              |  |  |  |  |  |  |
| 1                  | 99.1                      | 99.0                      | 99.7                 | 99.6                    |  |  |  |  |  |  |
| 2                  | 99.3                      | 99.2                      | 99.4                 | 98.7                    |  |  |  |  |  |  |
| 3                  | 99.5                      | 99.1                      | 99.5                 | 99.4                    |  |  |  |  |  |  |
| 4                  | 99.1                      | 99.2                      | 99.6                 | 99.2                    |  |  |  |  |  |  |
| 5                  | 99.2                      | 99.3                      | 99.8                 | 99.5                    |  |  |  |  |  |  |
| 6                  | 99.4                      | 99.2                      | 99.7                 | 99.4                    |  |  |  |  |  |  |
| Mean               | 99.3                      | 99.2                      | 99.6                 | 99.3                    |  |  |  |  |  |  |
| Standard Deviation | 0.16                      | 0.10                      | 0.15                 | 0.32                    |  |  |  |  |  |  |
| % R.S.D.           | 0.16                      | 0.10                      | 0.15                 | 0.32                    |  |  |  |  |  |  |
| Overall Mean       | 99.4                      |                           | 99.5                 |                         |  |  |  |  |  |  |
| Overall S.D.       | 0.14                      |                           | 0.29                 |                         |  |  |  |  |  |  |
| Overall R.S.D.     | 0.14                      |                           | 0.29                 |                         |  |  |  |  |  |  |

Table 3. Result of ruggedness

|                                 |                                     | Linaglip | tin  |          |                                      | Metfor | min  |       |
|---------------------------------|-------------------------------------|----------|------|----------|--------------------------------------|--------|------|-------|
| Spike level in %                | %<br>Recovery                       | Mean     | SD   | %<br>RSD | %<br>Recovery                        | Mean   | SD   | % RSD |
| 50%<br>(Assay)                  | 99.2<br>99.5<br>99.4                | 99.4     | 0.15 | 0.15     | 99.7<br>99.6<br>99.5                 | 99.6   | 0.10 | 0.10  |
| 100%<br>(Assay)                 | 99.3<br>99.1<br>99.4                | 99.3     | 0.15 | 0.15     | 99.8<br>99.7<br>99.6                 | 99.7   | 0.10 | 0.10  |
| 150%<br>(Assay)                 | 99.5<br>99.7<br>99.4                | 99.5     | 0.15 | 0.15     | 99.9<br>99.8<br>99.8                 | 99.8   | 0.06 | 0.06  |
| 50% (1X Blend)                  | <b>99.7</b><br>99.3<br>99 7         | 99.6     | 0.23 | 0.23     | <b>99.4</b><br>99.2<br>99 3          | 99.3   | 0.10 | 0.10  |
| 150% (3X Blend)<br>Overall Mean | 99.9<br>99.8<br>99.9<br><b>99.5</b> | 99.9     | 0.06 | 0.06     | 99.9<br>100.0<br>99.9<br><b>99 7</b> | 99.9   | 0.06 | 0.06  |
| Overall SD                      | 0.25                                |          |      |          | 0.24                                 |        |      |       |
| Overall % RSD                   | 0.25                                |          |      |          | 0.24                                 |        |      |       |

## Linearity

For the evolution of the linearity of the analytical method, a mixture of standard solution of Linagliptin and Metformin in a concentration range of 0.5123  $\mu$ g/ml to 11.2299  $\mu$ g/ml for Linagliptin and 159.6713  $\mu$ g/ml to 3500.0690  $\mu$ g/ml for Metformin respectively were prepared as per the test procedure of methodology and analyzed on the HPLC system.

Correlation coefficient (r) value for Linagliptin and Metformin using a regression equation with a 1/ (concentration<sup>2</sup>) of weighting factor was calculated.

Correlation coefficient (r) valuewas found 0.99942 for Linagliptin and 0.99990 for Metformin. Lower limit of Detection (LOD) and Lower limit of Quantification (LOQ) was calculated using following formulas.

Limit of detection (LOD) =3.3 X S.D. of Y intercept / Slope of the calibration curve.

Limit of Quantification (LOQ) =10 X S.D. of Y intercept / Slope of the calibration curve.

The LOD and LOQ for Linagliptin were 0.1036  $\mu$ g/ml and 0.3140  $\mu$ g/ml.

The LOD and LOQ for metformin were 46.4871  $\mu$ g/ml and 140.8700  $\mu$ g/ml.

The linearity plot was depicted in Figure 5 for Linagliptin and Metformin.



Figure 5. Linearity plot for Linagliptin and Metformin.

Results was tabulated in table no.5.

| Table 5. Result of linearity |            |        |           |        |  |  |
|------------------------------|------------|--------|-----------|--------|--|--|
| Samula                       | Linaglipti | in     | Metformin | 1      |  |  |
| Sample                       | Conc. in   | Area   | Conc. in  | Area   |  |  |
| no.                          | μg/mL      | Ratio  | μg/mL     | Ratio  |  |  |
| 1                            | 0.5123     | 0.0435 | 159.6713  | 0.2837 |  |  |
| 2                            | 0.8539     | 0.0733 | 266.1188  | 0.4742 |  |  |
| 3                            | 1.4231     | 0.1234 | 443.5313  | 0.7879 |  |  |
| 4                            | 2.3718     | 0.2027 | 739.2188  | 1.3207 |  |  |
| 5                            | 3.9530     | 0.3371 | 1232.0310 | 2.2353 |  |  |
| 6                            | 4.8682     | 0.4181 | 1517.2800 | 2.7414 |  |  |
| 7                            | 9.5454     | 0.8239 | 2975.0590 | 5.3607 |  |  |
| 8                            | 11.2299    | 0.9601 | 3500.0690 | 6.4014 |  |  |
| Slope                        | 0.0858     |        | 0.0018    |        |  |  |
| Intercept                    | 0.00010    |        | -0.00174  |        |  |  |
| CC(r)                        | 0.9999     |        | 0.99990   |        |  |  |

The results of the linearity confirmed that an excellent correlation was exists between area ratio and concentration of both drugs within the concentration range.

#### Stability in analytical solution

For the evolution of stability in analytical solution; standard solution and sample solution was prepared freshly injected on the HPLC system at initially and different time intervals up to 50 hours and 54 hours respectively and the results of standard solution and sample solution were recorded. Absolute % difference and similarity factor were calculated.

For sample solution; absolute % difference between the initial result and results obtained at different time

intervals was found 0.30 % for Linagliptin and 0.60% for Metformin.

For standard solution; similarity factor between the initial result and results obtained at different time intervals was found 99.6 for Linagliptin and 99.5 for Metformin.

The sample solution and standard solution are stable up to 50 hours and 54hours respectively on bench top at room temperature.

## Filter paper study

Filter paper study was performed to measure the analysis impact of filter paper used during various experiments of analytical method validation. For the evolution of the filter paper study of the analytical method, standard solution was prepared as per test procedure of methodology and distributed the standard solution in two different portions. One portion centrifuged at 4000 rpm for 5 minutes and second portion was filter through 0.45µm nylon membrane filter with discarding first 2mL of the filtrate and all the samples were analyzed on HPLC system.

Similarity factor between as such standard solution and filtered standard solution was found 100.9 for Linagliptin and 100.9 for Metformin.

% absolute difference between average % assay of centrifuged sample solution and filtered sample solution was found 0.20% for Linagliptin and 0.20% for Metformin.

Form the results it was concluded that the 0.45-µm nylon membrane filter with discarding first 2mL of the filtrate is suitable for the determination of the Assay Linagliptin and Metformin in tablet formulation.

## Forced degradation study

Forced degradation study was performed by treating sample tablet of 2.5MG/1000MG strength containing

1000 mg Metformin Hydrochloride and 2.5 mg Linagliptin under acidic, basic, peroxide, thermal, photolytic and humidity conditions but somewhat degradation of the Linagliptin observed under peroxide stress condition and slightly acidic degradation detected for Metformin as tabulated in table no. 6.

| Table 6. Results of force degradation |             |           |  |  |  |  |
|---------------------------------------|-------------|-----------|--|--|--|--|
| Degradation Condition                 | % Deg       | radation  |  |  |  |  |
| Degradation Condition                 | Linagliptin | Metformin |  |  |  |  |
| AcidTreated                           | 1.1         | 4.4       |  |  |  |  |
| AlkaliTreated                         | 1.3         | 3.3       |  |  |  |  |
| PeroxideTreated                       | 5.8         | 1.1       |  |  |  |  |
| Thermal Treated                       | 0.9         | 0.3       |  |  |  |  |
| Photolytic Treated                    | 0.7         | 0.4       |  |  |  |  |
| Humidity Treated                      | 0.3         | 0.5       |  |  |  |  |

## Method robustness

Robustness of the analytical method was evaluated by accomplishment of analysis under marginally changed in the chromatographic method of analysis such as change in detection wavelength, change in flow rate, change in composition of the mobile phase and change in column oven temperature, and the assay results were compared with the assay result of method precision i.e. with finalized chromatographic conditions. The analytical method used is robust for change in flow rate, change in column oven temperature, and change in wavelength and change organic component of mobile phase.

The result was tabulated in table no. 7 and in table no. 8.

|           |                  | Minus     | Plus  | Minus | Plus | Minus                      | Plus                       | Minus      | Plus       |
|-----------|------------------|-----------|-------|-------|------|----------------------------|----------------------------|------------|------------|
| Sr.<br>No | Method precision | Flow      | Flow  | Temp  | Temp | Organic<br>comp.<br>(MeOH) | Organic<br>comp.<br>(MeOH) | Wavelength | Wavelength |
| 1         | 99.1             | 99.0      | 99.3  | 98.9  | 99.2 | 99.0                       | 98.9                       | 99.1       | 99.0       |
| 2         | 99.3             | 98.9      | 99.0  | 99.1  | 98.9 | 98.8                       | 99.2                       | 99.3       | 98.8       |
| 3         | 99.5             | 99.1      | 99.1  | 99.4  | 99.5 | 98.9                       | 98.8                       | 99.4       | 99.3       |
| 4         | 99.1             |           |       |       |      |                            |                            |            |            |
| 5         | 99.2             | Not appli | cable |       |      |                            |                            |            |            |
| 6         | 99.4             |           |       |       |      |                            |                            |            |            |
| Over      | all mean         | 99.2      | 99.2  | 99.2  | 99.2 | 99.1                       | 99.2                       | 99.3       | 99.2       |
| Over      | all SD           | 0.19      | 0.16  | 0.19  | 0.20 | 0.23                       | 0.22                       | 0.15       | 0.21       |
| Over      | all %RSD         | 0.19      | 0.16  | 0.19  | 0.20 | 0.23                       | 0.22                       | 0.15       | 0.21       |

## Table 7. Result of robustness for linagliptin

|           |                  | Minus    | Plus   | Minus | Plus | Minus                      | Plus                       | Minus      | Plus       |
|-----------|------------------|----------|--------|-------|------|----------------------------|----------------------------|------------|------------|
| Sr.<br>No | Method precision | Flow     | Flow   | Temp  | Temp | Organic<br>comp.<br>(MeOH) | Organic<br>comp.<br>(MeOH) | Wavelength | Wavelength |
| 1         | 99.7             | 99.3     | 99.1   | 99.2  | 99.7 | 99.4                       | 99.4                       | 99.6       | 99.5       |
| 2         | 99.4             | 99.2     | 99.3   | 99.7  | 99.4 | 99.6                       | 99.6                       | 99.1       | 99.3       |
| 3         | 99.5             | 99.5     | 99.4   | 99.3  | 99.5 | 99.5                       | 99.2                       | 99.3       | 99.0       |
| 4         | 99.6             |          |        |       |      |                            |                            |            |            |
| 5         | 99.8             | Not appl | icable |       |      |                            |                            |            |            |
| 6         | 99.7             |          |        |       |      |                            |                            |            |            |
| Over      | all mean         | 99.5     | 99.5   | 99.5  | 99.6 | 99.6                       | 99.5                       | 99.5       | 99.5       |
| Over      | all SD           | 0.20     | 0.22   | 0.21  | 0.15 | 0.14                       | 0.19                       | 0.22       | 0.24       |
| Over      | all % RSD        | 0.20     | 0.22   | 0.21  | 0.15 | 0.14                       | 0.19                       | 0.22       | 0.24       |

#### Table 8. Result of robustness for metformin

## Range

From the analytical procedure data of precision, accuracy and linearity, the range of the analytical method used for simultaneous determination of assay of Linagliptin and Metformin drugs in the pharmaceutical Tablet formulations using Bupropion as a common internal standard was tabulated in table no. 9.

| Table 9. Result of range |                                   |  |  |  |  |
|--------------------------|-----------------------------------|--|--|--|--|
| Name of<br>Analyte (s)   | Concentration (µg/mL)             |  |  |  |  |
| Linagliptin              | 0.5123 μg/ml to 11.2299 μg/ml     |  |  |  |  |
| Metformin                | 159.6713 μg/ml to 3500.0690 μg/ml |  |  |  |  |

## Analysis of Marketed Products

The potency test of marketed tablet products were performed after the complete validation of the method for simultaneous determination of assay of Linagliptin and Metformin drugs in the pharmaceutical Tablet formulations using Bupropion as a common internal standard were performed by the proposed validated method.

The potency of tested brands was found to be within the limit of 98.00-102.00%. The results are tabulated in table no. 10.

|            |                       |                          | Linagliptin          | -              | -                        | Metformin               |                |
|------------|-----------------------|--------------------------|----------------------|----------------|--------------------------|-------------------------|----------------|
| Sr.<br>No. | Brandname code        | Label<br>Claimed<br>(mg) | Amount<br>found (mg) | Potency<br>(%) | Label<br>Claimed<br>(mg) | Amount<br>found<br>(mg) | Potency<br>(%) |
| 1          | Lina and Met A        | 2.5                      | 2.52                 | 100.6          | 1000                     | 1008.5                  | 100.9          |
| 2          | Lina and Met <b>B</b> | 2.5                      | 2.51                 | 100.1          | 850                      | 853.5                   | 100.4          |
| 3          | Lina and Met C        | 2.5                      | 2.53                 | 100.9          | 500                      | 503.0                   | 100.5          |

## Table 10. Result of potency of marketed products

## Conclusions

This is the first reported High Performance Liquid Chromatographic developed method used for simultaneous determination of assay of Linagliptin and Metformin drugs in the pharmaceuticals Tablet formulations using Bupropion as a common internal standard was stability indicating as recommended by ICH guidelines and validated for Specificity, System precision, Method precision, Ruggedness, Robustness, Accuracy etc. The present analytical method has a widespread linear concentration range augmenting its applicability to different strength of Linagliptin and Metformin tablet formulations. The chromatographic method may also be applied for simultaneous estimation of analytes in plasma, serum, urine after using appropriate sample extraction technique. Thus the method is Simpler, Accurate and Economical as compare to the previous methods.

## Acknowledgment

The authors are very much thankful to Principal, Maulana Azad College, Aurangabad for providing necessary facilities, instruments and analytical supports for the project work.

#### References

- 1. The United States pharmacopeia by united state pharmacopeial convention INC. Rock hill: MD; 2010.
- 2. Indian pharmacopoeia published by ministry of health and family welfare. Government of India; 2007.
- 3. British Pharmacopoeia, Medicinal and pharmaceutical substances. Stationary Office London; 2012.

- 4. The Merck Index, 15th edition, Maryadele J. O'Neil. Published by The Royal Society of Chemistry 2013, Page No.265, 1022 and 1102.
- 5. https://www.drugbank.ca/drugs/DB08882.
- 6. https://www.drugbank.ca/drugs/DB00331.
- 7. https://www.drugbank.ca/drugs/DB01156.
- Archana M, SriramN, Gayasuddin MD: Method development and validation of RP-HPLC method for determination of new ant diabetic agent linagliptin in bulk and in pharmaceutical formulation. IJMCA 2013; 3(1):1-5.
- Lakshmi B, Reddy TV: A Novel RP–HPLC method for the quantification of linagliptin in formulations. J Am Online 2012; 2(2):155–64.
- Chandra K Sekhar, Sudhakar P, Tammisetty Mohan Rao, VijayaBabu P, Kumar Manikanta A: A new UV-method for determination of linagliptin in bulk and pharmaceutical dosage form. Int J Uni Pharm Bio Sci 2013;2(4):1-6.
- NarendraNyola, GovindaSamyJeyabalan: Method development of simultaneous estimation of Sitagliptin and Metformin hydrochloride in pure and Tablet dosage form by UV-Vis spectroscopy. World J Pharm PharmSci 2012; 1(4):1392-401.
- 12. Nilam P, Pinkal, Khushbu S: Development and validation of analytical method for simultaneous estimation of miglitoland metformin hydrochloride in tablet dosage form. IJPR 2014; 5(11):4820-4.
- Madhukar A, Prince, Vijay Kumar R, Sanjeev Y, Jagadeeshwar K, Raghupratap: Simple and sensitive analytical method development and validation of Metformin hydrochloride by RP-HPLC. Int J Pharm PharmSci 2011; 3(3):117-20.
- NazarMustafa mansoory, Anurekha Jain: Simultaneous estimation of Metformin hydrochloride, Pioglitazone hydrochloride and Gliclazide by validated RP-HPLC method in solid dosage form. Int J Pharm PharmSci 2012;4(5):72-6.
- Bonde S, Bhadane RP, AvinashGaikwad, Deepak Katale, SumitGavali S Narendiran: A simple and sensitive method for determination of Metformin and Sitagliptin in human plasma using Liquid chromatography and tandem Mass spectrometry. Int J Pharm PharmSci 2013; 5(3):463-70.
- Anushaakula N, Prajwala, Sandhya M, Uma maheswararao: Development and validation of RP-HPLC method for simultaneous estimation of Metformin hydrochloride and Gliclazide in bulk and combined dosage form. Int J Pharm Sci 2013; 5(4):511-7.
- Bhoomaiah B, Jaya Shree: Development and validation of RP-HPLC method for simultaneous determination of Metformin and Miglitol in bulk and pharmaceutical formulation. Int J Pharm PharmSci 2014; 6(6):135-41.
- Nashwahgadallah M: Validated HPLC method for simultaneous determination of Sitagliptin, Metformin and Atorvastatin in pure form and in pharmaceutical formulations. Int J Pharm PharmSci 2014; 6(5):665-70.

- Srilekha K, Rajiv Dinakar B, Jyotsna Reddy B, DevalaRao G: Method development and validation of metformin and gliclazide by RP-HPLC-PDA method. Int J Inv Pharm Sci 2013; 1(4):319-28.
- Loni AB, Ghante MR, Sawant SD: Method development and validation for simultaneous determination of Sitagliptin phosphate and Metformin hydrochloride by RP-HPLC in bulk and tablet dosage form. AJPSR 2012; 2(8):24-37.
- Vani R,VijayaKumer B, Krishna Mohan G: Analytical method development and validation for the determination of sitagliptin and metformin using Reverse phase HPLC method in bulk and tablet dosage form. World J Pharm Pharm Sci 2014; 3(3):1803-11.
- Edigasasikirangoud, Krishna Reddy V, Chandra K Sekhar: A new simple RP – HPLC method for simultaneous estimation of metformin heland gliclazide tablet dosage form. IJPBS 2012; 2(4):277-83.
- 23. Ramzia I, Bagary E, Ehab F, Elkady, Bassam M, Ayoub: Spectrophotometric methods for the determination of linagliptin in binary mixture with metformin hydrochloride and simultaneous determination of linagliptin and metformin hydrochloride using high performance liquid chromatography. Int J Biomed Sci 2013; 9(1):41-7.
- 24. Kavitha KY, Geetha G, Hariprasad R, Kaviarasu M, Venkatnarayanan R: Development and validation of stability indicating RP-HPLC method for the simultaneous estimation of Linagliptin and Metformin in pure and pharmaceutical dosage form. J Chem Pharm Res 2013; 5(1):230-5.
- JanardhanSwamy A, Harinadha Baba K: Analytical method development and method validation for the simultaneous estimation of Metformin HCL and linagliptin in bulk and tablet dosage form by RP-HPLC Method. Int J Pharm 2013; 3(3):594-600.
- Rajasekaran A, Kavitha K, Arivukkarasu R: Development and validation of HPTLC method for simultaneous estimation and stability indicating study of Metformin HCl and Linagliptin in pharmaceutical formulation. World J Pharm Sci 2014; 2(4):317-27.
- 27. http://www.pharmacopeia.cn/v29240/usp29nf24s0\_c1225.html.
- 28. http://academy.gmp-compliance.org/guidemgr/files/Q2(R1).PDF
- 26.https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulator yInformation/Guidances/UCM073381.pdf
- 27.https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulator yInformation/Guidances/UCM073384.pdf.
- 31. Naved Ahmed, Obaid Shaikh, Aateka Barrawaz, Sarfaraz Khan, Zahid Zaheer: Development and validation of rapid HPLC method for determination of Aripiprazole in bulk drug and pharmaceutical formulation. Journal of Innovations in Pharmaceutical and Biological Sciences 2017; 4(3): 15-19.
- Sushil D. Patil, Sunil V. Amurutkar, Chatpalliwar V. A., Chandrashekhar D. Upasani: Development and validation of RP-HPLC method for Empagliflozin and Metformin HCL. Journal of Innovations in Pharmaceutical and Biological Sciences 2017; 4(4):185-189.