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Abstract 
ß-lactam antibiotics are of clinical importance for treatment of bacterial infections. Several 
penicillins and cephalosporins with broad spectra of activity and high stability against 
various β-lactamases have been developed and introduced in clinical practice. Due to 
increasing prevalence of antibiotic resistance, efforts to synthesize more compounds for 
better activity are still on. Traditionally, a combination of serendipity and empiricism has 
been the basis of new drug discovery.  Trial and error synthesis of compounds and their 
random screening for activity have proved to be both time-consuming and uneconomical. 
Hence, predicting pharmacokinetic parameters, of a new molecule, in an early stage of drug 
design, is of as high importance as the activity of the compound. With rapid advances in 
computation power of machines and availability of experimental data, these ADME 
properties can now be better predicted by using suitable computational methods. In the 
present study, a quantitative structure-property relationship study of 32 cephalosporins to 
renal clearance was performed with descriptors of molecular structures. Good correlations 
of Renal Clearance were obtained with constitutional and electrostatic descriptors like 
Bond length between C-O, bond length between H-O bonds, maximum bond length between 
H-N bond, number of H-O bonds and charge of all C atoms. High values of R² (0.8397) and 
Q² (0.7746) were indicative of high predictive power of this correlation. Also, lower R² 
RAND value compared to R² indicates that the correlations obtained are not chance 
correlations and hence can be used for prediction purposes.  
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1. Introduction 

Infectious diseases are responsible for a 
significant proportion of deaths 
worldwide and according to the World 
Health Organization, antimicrobial agents 

are considered to be miracle drugs that 
are the leading weapons in the treatment 
of infectious diseases. Unfortunately, a 
number of the current clinically 
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efficacious antimicrobial agents are 
becoming less effective because of the 
development of microbial resistance. So, 
there is an urgent need for discovery or 
optimization of novel antimicrobial agents 
that are active against resistant microbial 
strains. 
The pharmaceutical industry need to 
develop continuously new drugs in order 
to fight the development of resistance in 
pathogenic agents, and to cope with newly 
discovered types of infections [1]. Since 
ADME (absorption, distribution, 
metabolism and elimination) properties 
are important parameters in lead 
identification, the in silico methods to 
search for drug candidates with good 
ADME properties has attracted the 
pharmaceutical industry [2-4]. 
Various quantitative structure-
activity/property relationship 
(QSAR/QSPR) approaches have been 
applied to find relationships between 
ADME parameters and molecular 
structure and properties. QSPRs are 
among the most widely used techniques in 
rational drug design, which find 
mathematical relationships between 
physicochemical properties of compounds 
and their experimentally determined 
values. Thus, these derived QSPR models 
can be subsequently used to predict 
pharmacokinetic properties of new 
derivatives.  
Traditionally, a combination of 
serendipity and empiricism has been the 
basis of new drug discovery.  Trial and 
error synthesis of compounds and their 
random screening for activity have proved 
to be both time-consuming and 
uneconomical. Further, therapeutic effects 
and hazards to health are assessed using a 
series of experimental and in vivo tests. 
However, usage of animal models is often 
subject to ethical (and financial) 
considerations. Therefore, alternative 
methods have been under development to 

reduce the requirement of animals in 
testing [5]. 
The structural formula of an organic 
compound, in principle, contains coded 
within it all the information which 
predetermines the chemical, biological, 
and physical properties of that compound.  
If we can understand how a molecular 
structure brings about a particular effect 
in a biological system, we have a key to 
unlocking the relationship and using that 
information to our advantage. Formal 
development of these relationships on this 
premise proved to be the foundation for 
the development of predictive models [6, 
7].  
Quantitative structure–property 
relationships (QSPRs) are mathematical 
models that attempt to relate the 
structure-derived features of a compound 
to its biological or physicochemical 
activity. Similarly, quantitative structure–
toxicity relationship (QSTR) or 
quantitative structure–pharmacokinetic 
relationship (QSPR) is used when the 
modeling applies on toxicological or 
pharmacokinetic systems. QSAR (also 
QSPR, QSTR, and QSPR) works on the 
assumption that structurally similar 
compounds have similar activities. 
Therefore, these methods have predictive 
and diagnostic abilities. They can be used 
to predict the biological activity (e.g., IC50) 
or class (e.g., inhibitor versus non-
inhibitors) of compounds before the 
actual biological testing. They can also be 
used in the analysis of structural 
characteristics that can give rise to the 
properties of interest. 
The explosive development of computer 
technology and methodologies to calculate 
molecular properties increasingly made it 
possible to use computer techniques to 
aid the drug discovery process. The use of 
computer techniques in this context is 
often called computer-aided drug design 
(CADD), but since the development of 
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drug involves a large number of steps in 
addition to the development of a high 
affinity ligand a more appropriate name 
computer-aided ligand design (CALD) has 
also been proposed [8]. 
 
2. Materials and Methods  
 
The present study was undertaken with an 
objective to establish quantitative-structure 
pharmacokinetic relationships (QSPR) of 
prognostic relevance in the β-lactam series 
of drugs, specifically cephalosporins. The 
reason to select cephalosporins was 
because such correlations are developed for 
very few drugs. Further, very few reports on 
QSPR were available for this series of drugs 
and that too involving only small sets of 
drugs and few descriptors. Thus, an attempt 
was made to evaluate quantitative 
relationships between structural 
descriptors of cephalosporin molecules and 
renal clearance. 
The work was divided into three phases: 

1. Computation of molecular descriptors 
2. Compilation of pharmacokinetic data 
3. Development of meaningful correlations 
 
Computation of molecular descriptors 
It is well known fact that the structure of 
drug molecules is expressed quantitatively 
in terms of its physicochemical descriptors, 
which are lipophilic, electronic and steric in 
nature. The physicochemical descriptors 
govern the biological activity of the 
compounds.  
32 cephalosporins, for which experimental 
renal clearance values are available, were 
selected for the study. PUBCHEM database 
contains 2D and 3D minimized structures of 
large number of drugs and other molecules. 
3D structures of selected cephalosporins 
were downloaded from the database and 
used as such for correlation studies. (Table 
1) Structures of cephalosporins in molfile 
format were used as input for computation 
of descriptors. 

 
Table 1.  3D structure of selected Cephalosporins used in study 

S No. Cephalosporin 3 D Structure 

1 Cefaclor 

 

2 Cefadroxil 

 

3 Cefamandole nafate 
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S No. Cephalosporin 3 D Structure 

4 Cefamandole 

 
5 Cefatrizine 

 
6 Cefazolin 

 

7 Cefetamet  

 

8 Cefixime  

 

9 Cefmenoxime  

 

10 Cefonicid  
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S No. Cephalosporin 3 D Structure 

11 Cefoperazone  

 

12 Ceforanide  

 

13 Cefotaxime  

 

14 Cefotetan  

 

15 Cefotiam  

 

16 Cefoxitin  

 

17 Cefpimizole  
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S No. Cephalosporin 3 D Structure 

18 Cefpirome 

 
 

19 Cefprozil  

 
20 Cefroxadine  

 
21 Cefsulodin  

 
22 Ceftazidime  

 
23 Ceftibuten  

 
24 Ceftizoxime  
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S No. Cephalosporin 3 D Structure 

25 Ceftriaxone  

 
26 Cefuroxime  

 
27 Cephacetrile  

 
28 Cephalexin  

 

29 Cephaloridine  

 

30 Cephalothin  

 

31 Cephapirin  
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S No. Cephalosporin 3 D Structure 

32 Cephradine  

 

 = Hydrogen  = Carbon    = Oxygen  = Nitrogen 

 = Sulfur  = Chlorine       
 

 
Representative Molfile of one of the cephalosporin, i.e. Cefaclor used in the study is given 
below: 
 

CEFACLOR 51039 
  -OEChem-01232605283D 
 
 38 40  0     1  0  0  0  0  0999 V2000 
    4.3759   -2.8607    0.1803 Cl  0  0  0  0  0  0  0  0  0  0  0  0 
    0.4211   -1.2636    1.0217 S   0  0  0  0  0  0  0  0  0  0  0  0 
    2.3110    2.5640   -0.8543 O   0  0  0  0  0  0  0  0  0  0  0  0 
   -2.1507    2.0851    1.5566 O   0  0  0  0  0  0  0  0  0  0  0  0 
    5.3604    0.5101    0.0076 O   0  0  0  0  0  0  0  0  0  0  0  0 
    4.3871    0.0327   -2.0061 O   0  0  0  0  0  0  0  0  0  0  0  0 
    2.2714    0.5146    0.3114 N   0  0  0  0  0  0  0  0  0  0  0  0 
   -0.6351    1.4084   -0.0623 N   0  0  0  0  0  0  0  0  0  0  0  0 
   -4.0767    2.3920   -0.3999 N   0  0  0  0  0  0  0  0  0  0  0  0 
    1.2515    0.3141    1.3270 C   0  0  1  0  0  0  0  0  0  0  0  0 
    0.5689    1.5738    0.7510 C   0  0  1  0  0  0  0  0  0  0  0  0 
    1.8682    1.7394   -0.0895 C   0  0  0  0  0  0  0  0  0  0  0  0 
    3.2440   -0.3919    0.0343 C   0  0  0  0  0  0  0  0  0  0  0  0 
    1.9540   -2.2411    1.2193 C   0  0  0  0  0  0  0  0  0  0  0  0 
    3.1419   -1.6662    0.4708 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -1.9169    1.6830    0.4179 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -3.0082    1.4114   -0.6118 C   0  0  1  0  0  0  0  0  0  0  0  0 
    4.3725    0.0641   -0.7926 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -3.5054   -0.0155   -0.5080 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -2.8881   -1.0009   -1.2576 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -4.5653   -0.3008    0.3343 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -3.3458   -2.3150   -1.1619 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -5.0228   -1.6150    0.4300 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -4.4130   -2.6221   -0.3182 C   0  0  0  0  0  0  0  0  0  0  0  0 
    1.6341    0.4445    2.3464 H   0  0  0  0  0  0  0  0  0  0  0  0 
    0.4597    2.3811    1.4859 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -0.5495    1.0672   -1.0168 H   0  0  0  0  0  0  0  0  0  0  0  0 
    1.7232   -3.2486    0.8573 H   0  0  0  0  0  0  0  0  0  0  0  0 
    2.1915   -2.3136    2.2862 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -2.6100    1.5863   -1.6194 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -4.7869    2.2823   -1.1235 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -3.7028    3.3332   -0.5191 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -2.0565   -0.7725   -1.9177 H   0  0  0  0  0  0  0  0  0  0  0  0 
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   -5.0487    0.4568    0.9434 H   0  0  0  0  0  0  0  0  0  0  0  0 
    6.1360    0.8252   -0.5037 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -2.8705   -3.0993   -1.7438 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -5.8510   -1.8554    1.0903 H   0  0  0  0  0  0  0  0  0  0  0  0 
   -4.7684   -3.6456   -0.2425 H   0  0  0  0  0  0  0  0  0  0  0  0 
  1 15  1  0  0  0  0 
  2 10  1  0  0  0  0 
  2 14  1  0  0  0  0 
  3 12  2  0  0  0  0 
  4 16  2  0  0  0  0 
  5 18  1  0  0  0  0 
  5 35  1  0  0  0  0 
  6 18  2  0  0  0  0 
  7 10  1  0  0  0  0 
  7 12  1  0  0  0  0 
  7 13  1  0  0  0  0 
  8 11  1  0  0  0  0 
  8 16  1  0  0  0  0 
  8 27  1  0  0  0  0 
  9 17  1  0  0  0  0 
  9 31  1  0  0  0  0 
  9 32  1  0  0  0  0 
 10 11  1  0  0  0  0 
 10 25  1  0  0  0  0 
 11 12  1  0  0  0  0 
 11 26  1  0  0  0  0 
 13 15  2  0  0  0  0 
 13 18  1  0  0  0  0 
 14 15  1  0  0  0  0 
 14 28  1  0  0  0  0 
 14 29  1  0  0  0  0 
 16 17  1  0  0  0  0 
 17 19  1  0  0  0  0 
 17 30  1  0  0  0  0 
 19 20  2  0  0  0  0 
 19 21  1  0  0  0  0 
 20 22  1  0  0  0  0 
 20 33  1  0  0  0  0 
 21 23  2  0  0  0  0 
 21 34  1  0  0  0  0 
 22 24  2  0  0  0  0 
 22 36  1  0  0  0  0 
 23 24  1  0  0  0  0 
 23 37  1  0  0  0  0 
 24 38  1  0  0  0  0 
M  END 
$$$$ 

 
 
Software used to calculate the descriptors 
were, QikProp and CODESSA 
(Comprehensive Descriptors for Structural 
and Statistical Analysis). One of the major 

advantages of CODESSA is its large pool of 
molecular descriptors, which are calculated 
for each chemical structure. Descriptors are 
automatically calculated for all structures 
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added to the storage. These programs were 
taken from Schrödinger and M/s Semichem, 
Kansas, USA respectively. These software 
were selected on the basis of literature 
reports where it was shown to possess most 
of the desired attributes in the development 
of quantitative structure property 
relationships. 
 
Steps in QikProp software to calculate 
descriptors included: 
 MOL files were used as input to the 

software by selecting the command 
ProjectImport structures. All the 
molfiles were selected and imported 
into QikProp. Descriptors were 
calculated by using commands 
ApplicationQikProp and pressing run. 
QikProp calculates all the descriptors 
and creates a project table. 

For developing better correlations, 
additional descriptors were calculated using 

CODESSA. Descriptors obtained in QikProp 
were saved as CSV file for integration into 
CODESSA. CODESSA has a facility to input 
files directly from a CSV or a text file format. 
To calculate codessa descriptors, command 
Descriptorscalculate was used. 
CODESSA calculated additional descriptors 
for each of cephalosporin. 
 
Compilation of pharmacokinetic (Renal 
clearance) data 
For comparing the predicted values of renal 
clearance with actual values, reported 
values of renal clearance of cephalosporins 
in humans were taken from literature [9-
13]. Different authors have reported 
variable values, all values were taken and a 
mean of value for each cephalosporin was 
calculated. Compiled values of renal 
clearance for all 32 cephalosporins used in 
study are given in Table 2. 

 
Table 2. Renal clearance values of selected Cephalosporins 

# Cephalosporin 
CLR 

(mL/min)  
# Cephalosporin 

CLR 
(mL/min) 

1.  Cefaclor 289.5 
 

2.  Cefotiam 200 

3.  Cefadroxil 128.35 
 

4.  Cefoxitin 285.37 

5.  Cefamandole 162 
 

6.  Cefpimizole 94.5 

7.  Cefamandole nafate 225 
 

8.  Cefpirome 82.1 

9.  Cefatrizine 175 
 

10.  Cefprozil 171.5 

11.  Cefazolin 52.5 
 

12.  Cefroxadine 291.5 

13.  Cefetamet 130.3 
 

14.  Cefsulodin 85 

15.  Cefixime 21.8 
 

16.  Ceftazidime 90.87 

17.  Cefmenoxime 176 
 

18.  Ceftibuten 62.1 

19.  Cefonicid 22.26 
 

20.  Ceftizoxime 107.33 

21.  Cefoperazone 17.86 
 

22.  Ceftriaxone 7.87 

23.  Ceforanide 4.15 
 

24.  Cefuroxime 125 

25.  Cefotaxime 160.5 
 

26.  Cephacetrile 313 

27.  Cefotetan 26.5 
 

28.  Cephalexin 195 

29.  Cephalothin 252 
 

30.  Cephaloridine 130 

31.  Cephapirin 340 
 

32.  Cephradine 343 
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Development of meaningful correlations 
One of several problems in design of QSPR 
models is the selection of the most relevant 
set of molecular descriptors for the 
property or activity that is intended to be 
modeled. Chemical structures are usually 
encoded by a variety of descriptor families 
such as functional groups, topological, 
constitutional, thermodynamic, quantum 
mechanical, etc. Descriptor selection is the 
process of identifying most relevant 
information rich descriptors from large set 
of available descriptors. . All the descriptors 
generated for each molecule are not 
significant in developing QSPR models. The 
use of all available descriptors in the model 
development process causes poor 
predictions because of over fitting. Only 
significant descriptors calculated by 
QikProp and CODESSA were taken in the 
correlation studies. Insignificant or 
intercorrelated descriptors were skipped. 
Correlation studies were carried out by 
“Best Multilinear Regression” sub routine in 
CODESSA.  
Selection criteria and steps used for “Best 
Multilinear Regression” in CODESSA were: 
 Maximum number of descriptors, 

started from 1 and then taken up to 
depending on the number of molecules 
selected. Drug molecules: Descriptor 
ratio was taken as 6:1, which implies 
that not more than one descriptor per 6 
molecules in a series was used for 
developing correlations.  For example, if 
there were 21 molecules for a particular 
property, maximum number of 
descriptors used for developing 
regression equations was kept at 3. 
Similarly for a series having 40 
molecules, maximum number of 
descriptors was 6. 

 Maximum number of correlations per 
number of descriptor were kept as 5 

 Correlation improvement cut-off was 
kept as 0.01 

 Maximum r2 for orthogonal descriptor 
was kept as 0.5  

 If missing property value, then the 
selection was made to skip structure 

“Best Multilinear Regression” routine tests a 
large number of correlations as each 
descriptor type is analyzed for correlations 
individually for the selected 
pharmacokinetic property.  
 
3. Results and discussion 
 
Renal clearance data was available for 32 
cephalosporins, thus, correlations were 
attempted keeping the number of maximum 
descriptors to 5 thereby limiting the drug: 
descriptor ration to 6:1. LOO and y-
scramble tests were also performed. The 
best correlations obtained with renal 
clearance (CLR) for cephalosporins are 
given in below Table 3.  The table lists 
equations starting from 1 descriptor 
equation up to an equation with maximum 
number of descriptors (i.e. 5) that can be 
used as mentioned above.  
With the probability of reporting a large 
number of such correlations for each 
property, it was considered necessary to 
change the format of these correlations into 
an equation format. The validity of the 
equation and the relative importance of the 
different parameters used can be judged by 
four statistical criteria; namely coefficient of 
determination R2, Cross validated R2 (Q2), 
Fisher’s F value, and R2 Rand which is the 
maximum R2 obtained after randomizing 
the property values and finding correlations 
with descriptors again. The larger value of F 
indicates higher probability of QSPR 
equation being significant. These methods 
provide correlation coefficient (r), standard 
deviation (s), and ratio between variance of 
calculated and observed activates (F). 
Depending upon the values of these 
statistical parameters, the significance of 
each equation was evaluated. 
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M = Number of molecular descriptors, N = Number of cephalosporins 

 
Good correlations of Renal Clearance were 
obtained with constitutional and 
electrostatic descriptors. The descriptors 
that figured in the best correlation 
(Equation 5, Table 3) were Bond length 
between C-O, bond length between H-O 
bonds, maximum bond length between H-N 
bond, number of H-O bonds and charge of 
all C atoms. High values of R² (0.8397) and 
Q² (0.7746), obtained with equation 5, are 
indicative of high predictive power of this 

correlation equation. It is notable that the 
R² RAND value is lesser than the R², which 
indicates that the correlation equation 
obtained, is not chance correlations and 
hence can be used for prediction purposes. 
As it would be too voluminous to give 
details of each of the equations obtained, 
details of only the best correlation is given. 
The correlation matrix of descriptors used 
in Equation 5 is given in the Table 4.

 

 

 

 

Table 3. Correlations of renal clearance in the series of Cephalosporins 
   Equation M N R² Q2 F-Value R² 

RAND 
1.  ClR = - 333.858*Average Information 

Content (Order 1) + 1570.007 
1 32 0.4689 0.4089 26.4875 0.4021 

2.  ClR = 1898.612*Average Bond Length for a 
C-O Bond - 382.605*Average 
Information Content (Order 1) - 
642.784 

2 32 0.6054 0.5289 22.2454 0.4762 

3.  ClR = 3405.017*Average Bond Length for a 
C-O Bond - 647.698*Net Zefirov 
Charge of All C Atoms - 
197.354*Uniform-Mass, Center of 
Mass, X - 3904.678 

3 32 0.7476 0.6802 27.6409 0.5456 

4.  ClR = 3350.916*Average Bond Length for a 
C-O Bond + -618.266*Net Zefirov 
Charge of All C Atoms + -
177.44*Uniform-Mass, Center of 
Mass, X-33.616*Number of H-O 
Bonds-3804.09 

4 32 0.7899 0.7128 25.3760 0.4818 

5.  ClR = 3208.327*Average Bond Length for a 
C-O Bond - 590.784*Net Zefirov 
Charge of All C Atoms - 
205.246*Uniform-Mass, Center of 
Mass, X + 43161.077*Maximum 
Bond Length for a H-N Bond - 
31.141*Fractional Minimum Zefirov 
Negative Charge Times ASASA - 
47542.826 

5 32 0.8397 0.7746 27.2366 0.5690 
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Table 4. Correlation matrix for selected descriptors in Equation 5, Table 3 

 Average 
Bond 

Length for a 
C-O Bond 

Net 
Zefirov 

Charge of 
All C 

Atoms 

Uniform-
Mass, 

Center of 
Mass, X 

Maximum 
Bond 

Length for 
a H-N Bond 

Fractional 
Minimum 

Zefirov 
Negative 

Charge Times 
ASASA 

Average Bond Length for a C-
O Bond 

1.0000     

Net Zefirov Charge of All C 
Atoms 

0.4030 1.0000    

Uniform-Mass, Center of 
Mass, X 

0.2481 -0.1699 1.0000   

Maximum Bond Length for a 
H-N Bond 

-0.3289 -0.6175 0.2802 1.0000  

Fractional Minimum Zefirov 
Negative Charge Times 
ASASA 

-0.3428 -0.4416 0.1628 0.7545 1.0000 

 
The correlation matrix indicates that none of 
the descriptors used in the correlation are 
orthogonal with the other descriptors.  
The MLR regression coefficients for 
individual descriptors used in best fit 
Equation 5 are given in Table 5. 
The plots of experimental versus predicted 
renal clearance values obtained are given in 
Figure 1. 

With all the correlations highly significant, 
and the Q² values reasonably high (all > 
0.5), some excellent relationships are 
achieved which can be successfully used to 
assess the renal clearance of newer 
molecules.

 
Table 5. MLR regression coefficients and t-values for CLR in cephalosporins 

# Desc. Name Coeff. t p(t) SE 

0 Intercept -47542.8256 -3.3559 0.002442 14167.1347 

1 Average Bond Length for a C-O 
Bond 

3208.3268 6.8197 3.08E-07 470.4483 

2 Net Zefirov Charge of All C Atoms -590.7837 -7.7480 3.21E-08 76.2496 

3 Uniform-Mass, Center of Mass, X -205.2464 -7.0943 1.56E-07 28.9313 

4 Maximum Bond Length for a H-N 
Bond 

43161.0773 3.1112 0.004485 13872.5941 

5 Fractional Minimum Zefirov 
Negative Charge Times ASASA 

-31.1406 -3.7809 0.000826 8.2364 
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Figure 1. Plot of experimental vs predicted 

renal clearance (CLR) 

 
Conclusion 
 
Good correlations of Renal Clearance were 
obtained with constitutional and 
electrostatic descriptors. The descriptors 
that figured in the best correlation were 
Bond length between C-O, bond length 
between H-O bonds, maximum bond length 
between H-N bond, number of H-O bonds 
and charge of all C atoms. High values of R² 
(0.8397) and Q² (0.7746), obtained with 5 
descriptors are indicative of high predictive 
power of this correlation. Also, R2 RAND 
values lesser than R2 shows that these are 
not chance correlations.   
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